Question #280856

A wall "h" meters high is 2m away from the building. The shortest ladder that can reach the building with one end resting on the ground outside the wall is 6m. How high is the wall in meters?


1
Expert's answer
2021-12-20T07:15:36-0500


Let L=x+yL=x+y be the lengh of the ladder.


cosθ=2y,sinθ=hx\cos \theta=\dfrac{2}{y}, \sin \theta=\dfrac{h}{x}

Then


L=x+y=hsinθ+2cosθL=x+y=\dfrac{h}{\sin\theta}+\dfrac{2}{\cos \theta}

L=hsinθ+2cosθL=\dfrac{h}{\sin\theta}+\dfrac{2}{\cos \theta}

Find the first derivative with respect to θ\theta


dLdθ=hcosθsin2θ+2sinθcos2θ\dfrac{dL}{d\theta}=-\dfrac{h\cos \theta}{\sin^2\theta}+\dfrac{2\sin \theta}{\cos^2 \theta}

Find the critical number(s)


dLdθ=0=>hcosθsin2θ+2sinθcos2θ=0\dfrac{dL}{d\theta}=0=>-\dfrac{h\cos \theta}{\sin^2\theta}+\dfrac{2\sin \theta}{\cos^2 \theta}=0

hcos3θ=2sin3θh\cos^3\theta=2\sin^3\theta

h=2tan3θh=2\tan^3\theta

Given that  the shortest ladder is 6 m.

Substitute


hsinθ+2cosθ=6\dfrac{h}{\sin\theta}+\dfrac{2}{\cos \theta}=6

2tan3θcosθ+2sinθ=6sinθcosθ2\tan^3\theta\cos \theta+2\sin \theta=6\sin \theta\cos \theta

0°<θ<90°0\degree<\theta< 90\degree


sin3θ+sinθcos2θ=3sinθcos3θ\sin^3\theta+\sin \theta\cos^2\theta=3\sin \theta\cos^3\theta

1=3cos3θ1=3\cos^3\theta

cos3θ=13\cos^3\theta=\dfrac{1}{3}

cosθ=133\cos \theta=\dfrac{1}{\sqrt[3]{3}}

sinθ=11323=93133\sin \theta=\sqrt{1-\dfrac{1}{\sqrt[3]{3^2}}}=\dfrac{\sqrt{\sqrt[3]{9}-1}}{\sqrt[3]{3}}

h=2(931)3h=2\bigg(\sqrt{\sqrt[3]{9}-1}\bigg)^3

h2.245 mh\approx2.245\ m


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS