Find all numbers at which f is not continous for the given functions. Answers must be written in interval notation.
a. g(x) = x+5/x²+6x+8
b. f(x) = (3/x²) + (2/x+4) - (x/2x-3)
c. f(x) = x/(x³-x²)
d. f(x) = [(sqrtx)+10]/x
e. f(x) = 2x/x(sqrt x+4)
f. f(x) = ln srqt(x+6/4x²-9)
g. f(x) = ln srqt(x-8/x+3)
h. f(x) = [(sqrtx)+5]/4-(sqrt x)
i. f(x) = x-1/(sqrt x²-3x+2)
j. f(t) = sin^-1 (2t-3)
a. "g(x) = {\\frac {x+5} {x\u00b2+6x+8}}"
D: "x \\in R" / {-2, -4}
g(x) is not continuous at x є {-2, -4}
b. "g(x) = {\\frac 3 {x\u00b2}}+{\\frac 2 {x+4}}+{\\frac x {2x-3}}"
D: "x \\in R" / {0, -4, 1.5}
g(x) is not continuous at x є {0, -4, 1.5}
c. "g(x) = {\\frac x {x^{3}-x^{2}}}"
D: "x \\in R" / {0, 1}
g(x) is not continuous at x є {0, 1}
d. "g(x) = {\\frac {sqrt(x)+10} x}"
D: "x \\in (0,+\\infty)"
g(x) is not continuous at x є "(-\\infty,0]"
e. "g(x) = {\\frac {2x} {x*sqrt(x+4)}}"
D: "x \\in (-4,+\\infty)" / {0}
g(x) is not continuous at x є "(-\\infty,-4] \u222a"{0}
f. f(x) = "ln {\\frac {x+6} {4x^2-9}}"
D: "x \\in (-6,-1.5)\u222a(1.5, +\\infty)"
f(x) is not continuous at x є "(-\\infty,-6] \u222a[-1.5,1.5]"
g. f(x) = "ln{\\frac {x-5} {x+3}}"
D: "x \\in (-\\infty,-3)\u222a(8,+\\infty)"
f(x) is not continuous at x є "[-3,8]"
h. f(x) = "{\\frac {sqrt(x+5)} {4-sqrt(x)}}"
D: "x \\in (0,+\\infty)" \ {4}
f(x) is not continuous at x є "(-\\infty,0] \u222a"{4}
i. f(x) = "{\\frac {x-1} {sqrt(x^2-3x+2)}}"
D: "x \\in R" \ [1;2]
f(x) is not continuous at x є "[1,2]"
j. f(t) = "ln{\\frac 1 {sin(2t-3)}}"
D: "t \\in R" \ {"{\\frac {2\\pi n+3} 2},n \\in Z" }
f(t) is not continuous at t є {"{\\frac {2\\pi n+3} 2},n \\in Z" }
Comments
Leave a comment