Use Green’s theorem to calculate the area enclosed by the ellipse x 2 a 2 + y 2 b 2 = 1. Where F(x, y) =< P, Q >=< y 2 , x 2 >.
"\\iint_C(\\frac{\\partial Q}{\\partial x}-\\frac{\\partial P}{\\partial y})dxdy=\\\\\n\n\\int_{\\partial C}(Pdx+Qdy)=[We\\space take\\space P=- \\frac{y}{2},Q=\\frac{x}{2}]=\n\n\\\\ [\\partial C: x=a\\cdot cos(t),y=b\\cdot sin(t),0\\le t \\le 2\\pi]=\\\\ \\frac{1}{2}\\cdot \\int_0^{2\\pi}(ab\\cdot sin^2(t)+ab\\cdot cos^2(t))dt=\\frac{1}{2}\\cdot ab\\cdot \\int_0^{2\\pi}(sin^2(t)+ cos^2(t))dt=\\\\ \\frac{1}{2}ab\\cdot \\int _0^{2\\pi}dt=ab\\pi;\\\\"
From another hand we have
"\\iint_C(\\frac{\\partial Q}{\\partial x}-\\frac{\\partial P}{\\partial y})dxdy=\\\\\n \\iint_C(\\frac{\\partial (\\frac{x}{2})}{\\partial x}-\\frac{\\partial (-\\frac{y}{2})}{\\partial y})dxdy=\\iint_C(\\frac{1}{2}+\\frac{1}{2})dxdy=\\iint_Cdxdy=|C|"
Thus |C|=S(C)=ab"\\pi"
Comments
Leave a comment