Question #260095

Use Greens theorem to calculate the line integral H C x 2ydx + (y − 3)dy,, where C is a rectangle with vertices (1, 1), (4, 1), (4, 5) and (1, 5), oriented counterclockwise.


1
Expert's answer
2021-11-15T15:56:23-0500

Given,C[{M(x)+2y}dxx2dy]Let m=M(x)+2y and N=x2y(m)=2 and x(N)=2xGiven, \oint_C[\{M(x)+2y\}dx- x^2dy ]\\ Let \space m= M(x) +2y \space and \space N=-x^2\\ \therefore \frac{\partial }{\partial y}(m)=2 \space and \space \frac{\partial }{\partial x}(N)=-2x

Using the Green theorem

C[{M(x)+2y}dxx2dy]=D[2x2]dA=1514(2x2)dxdy=1514(2x2)dxdy=15(21)dy=84\therefore \oint_C[\{M(x)+2y\}dx- x^2dy ]=\iint_D[-2x-2]dA\\ =\intop_1^5\int_1^4(-2x-2)dxdy\\ =\int _1^5\int _1^4\left(-2x-2\right)dxdy\\ =\int _1^5\left(-21\right)dy\\ =-84


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS