Use Greens theorem to calculate the line integral H C x 2ydx + (y − 3)dy,, where C is a rectangle with vertices (1, 1), (4, 1), (4, 5) and (1, 5), oriented counterclockwise.
"Given, \\oint_C[\\{M(x)+2y\\}dx- x^2dy ]\\\\\nLet \\space m= M(x) +2y \\space and \\space N=-x^2\\\\\n\\therefore \\frac{\\partial }{\\partial y}(m)=2 \\space and \\space \\frac{\\partial }{\\partial x}(N)=-2x"
Using the Green theorem
"\\therefore \\oint_C[\\{M(x)+2y\\}dx- x^2dy ]=\\iint_D[-2x-2]dA\\\\\n=\\intop_1^5\\int_1^4(-2x-2)dxdy\\\\\n=\\int _1^5\\int _1^4\\left(-2x-2\\right)dxdy\\\\\n=\\int _1^5\\left(-21\\right)dy\\\\\n=-84"
Comments
Leave a comment