Question #259868

Using weiestrass M test show that the following series converges uniformly sigma infinity n=1 n³ x^n x€[-1/3,1/3]


1
Expert's answer
2021-11-02T18:23:21-0400

Using Weiestrass M test let us show that the following series converges uniformly n=1n3xn, x[13,13].\sum_{n=1}^{ \infty} n^3 x^n,\ x\in[-\frac{1}{3},\frac{1}{3}].

Taking into account that

maxx[13,13]n3xn=n33n,\max\limits_{x\in[-\frac{1}{3},\frac{1}{3}]}{|n^3 x^n|}=\frac{n^3}{3^n}, and

limn(n+1)33n+1n33n=limn13(n+1)3n3=limn13n3+3n2+3n+1n3=13<1,\lim\limits_{n\to\infty}\frac{\frac{(n+1)^3}{3^{n+1}}}{\frac{n^3}{3^n}}= \lim\limits_{n\to\infty}\frac{1}3\frac{(n+1)^3}{n^3} =\lim\limits_{n\to\infty}\frac{1}3\frac{n^3+3n^2+3n+1}{n^3}=\frac{1}3<1,

we conclude that the series n=1n33n\sum_{n=1}^{ \infty}\frac{n^3}{3^n} is covergent, and hence by Weiestrass M test the series n=1n3xn\sum_{n=1}^{ \infty} n^3 x^n converges uniformly on the interval [13,13].[-\frac{1}{3},\frac{1}{3}].


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS