Using weiestrass M test show that the following series converges uniformly sigma infinity n=1 n³ x^n x€[-1/3,1/3]
Using Weiestrass M test let us show that the following series converges uniformly "\\sum_{n=1}^{ \\infty} n^3 x^n,\\ x\\in[-\\frac{1}{3},\\frac{1}{3}]."
Taking into account that
"\\max\\limits_{x\\in[-\\frac{1}{3},\\frac{1}{3}]}{|n^3 x^n|}=\\frac{n^3}{3^n}," and
"\\lim\\limits_{n\\to\\infty}\\frac{\\frac{(n+1)^3}{3^{n+1}}}{\\frac{n^3}{3^n}}=\n\\lim\\limits_{n\\to\\infty}\\frac{1}3\\frac{(n+1)^3}{n^3}\n=\\lim\\limits_{n\\to\\infty}\\frac{1}3\\frac{n^3+3n^2+3n+1}{n^3}=\\frac{1}3<1,"
we conclude that the series "\\sum_{n=1}^{ \\infty}\\frac{n^3}{3^n}" is covergent, and hence by Weiestrass M test the series "\\sum_{n=1}^{ \\infty} n^3 x^n" converges uniformly on the interval "[-\\frac{1}{3},\\frac{1}{3}]."
Comments
Leave a comment