Question #260087

) Calculate integral R C F · dr · dr, where F(x, y, z) =< 2x ln y, x 2 y + z 2 , 2yz >, and C is a curve with a parameterization r(t) =< t2 , t, t >, 1 ≤ t ≤ e


1
Expert's answer
2021-11-09T16:57:54-0500
r(t)=<2t,1,1>r'(t)=\lt2t,1,1\gt

F(r(t))=<2t2lnt,t3+t2,2t2>F(r(t))=\lt2t^2\ln t, t^3+t^2,2t^2\gt

F(r(t))r(t)=4t3lnt+t3+t2+2t2F(r(t))r'(t)=4t^3\ln t+t^3+t^2+2t^2

CFdr=1e(4t3lnt+t3+3t2)dt\int_CF\cdot dr=\displaystyle\int_{1}^{e}(4t^3\ln t+t^3+3t^2)dt

4t3lntdt\int4t^3\ln t dt

u=lnt,du=1tdtu=\ln t, du=\dfrac{1}{t}dt

dv=4t3dt,v=t4dv=4t^3dt, v=t^4


4t3lntdt=t4lntt3dt=t4lntt44+C\int4t^3\ln t dt=t^4\ln t-\int t^3dt=t^4\ln t-\dfrac{t^4}{4}+C


CFdr=1e(4t3lnt+t3+3t2)dt\int_CF\cdot dr=\displaystyle\int_{1}^{e}(4t^3\ln t+t^3+3t^2)dt

=[t4lntt44+t44+t3]e1=[t^4\ln t-\dfrac{t^4}{4}+\dfrac{t^4}{4}+t^3]\begin{matrix} e \\ 1 \end{matrix}

=e4+e31=e^4+e^3-1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS