Answer to Question #260090 in Calculus for tarie

Question #260090

) Find the value of integral Z C F · dr, where C is a semicircle parameterized by vecsr(t) = cost,sin t, 0 ≤ t ≤ π, and F =< −y, x > . 


1
Expert's answer
2021-11-03T11:32:24-0400

Given, F=<-y,x>=-y i+x j

and r=<cost, sint>=cost i+ sint j.

By using the formula,

CF.dr=abF(r(t)).r(t)dt=0πF(cost,sint).(sint i+cost j)dt=0π(sint i+cost j).(sint i+cost j)dt=0π(sin2t+cos2t)dt=0πdt=[t]0π=π\int_C F.dr=\int_a^b F(r(t)).r'(t) dt\\ =\int_0^\pi F(cost, sint) .(-sint \space i+ cost \space j) dt\\ =\int_0^\pi (-sint \space i+cost \space j) .(-sint \space i+ cost \space j) dt\\ =\int_0^\pi (sin^2t+cos^2t)dt\\ =\int_0^\pi dt\\ =[t]_0^\pi\\ =\pi


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment