) Find the value of integral Z C F · dr, where C is a semicircle parameterized by vecsr(t) = cost,sin t, 0 ≤ t ≤ π, and F =< −y, x > .
Given, F=<-y,x>=-y i+x j
and r=<cost, sint>=cost i+ sint j.
By using the formula,
∫CF.dr=∫abF(r(t)).r′(t)dt=∫0πF(cost,sint).(−sint i+cost j)dt=∫0π(−sint i+cost j).(−sint i+cost j)dt=∫0π(sin2t+cos2t)dt=∫0πdt=[t]0π=π\int_C F.dr=\int_a^b F(r(t)).r'(t) dt\\ =\int_0^\pi F(cost, sint) .(-sint \space i+ cost \space j) dt\\ =\int_0^\pi (-sint \space i+cost \space j) .(-sint \space i+ cost \space j) dt\\ =\int_0^\pi (sin^2t+cos^2t)dt\\ =\int_0^\pi dt\\ =[t]_0^\pi\\ =\pi∫CF.dr=∫abF(r(t)).r′(t)dt=∫0πF(cost,sint).(−sint i+cost j)dt=∫0π(−sint i+cost j).(−sint i+cost j)dt=∫0π(sin2t+cos2t)dt=∫0πdt=[t]0π=π
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment