) Find the value of integral Z C F · dr, where C is a semicircle parameterized by vecsr(t) = cost,sin t, 0 ≤ t ≤ π, and F =< −y, x > .
Given, F=<-y,x>=-y i+x j
and r=<cost, sint>=cost i+ sint j.
By using the formula,
"\\int_C F.dr=\\int_a^b F(r(t)).r'(t) dt\\\\\n=\\int_0^\\pi F(cost, sint) .(-sint \\space i+ cost \\space\nj) dt\\\\\n=\\int_0^\\pi (-sint \\space\n i+cost \\space\nj) .(-sint \\space\n i+ cost \\space\nj) dt\\\\\n=\\int_0^\\pi (sin^2t+cos^2t)dt\\\\\n=\\int_0^\\pi dt\\\\\n=[t]_0^\\pi\\\\\n=\\pi"
Comments
Leave a comment