Question #259873

use the fundamental theorem of integral calculus to evaluate the integral integration of 0 to 1 ( 2xsinx 1/x - cos.1/x )dx



1
Expert's answer
2021-11-02T11:50:06-0400
01(2xsin(1/x)cos(1/x))dx\displaystyle\int_{0}^{1}(2x\sin(1/x)-\cos(1/x))dx

Let t=x2sin(1/x).t=x^2\sin(1/x). Then


dt=(2xsin(1/x)cos(1/x))dxdt=(2x\sin(1/x)-\cos(1/x))dx

(2xsin(1/x)cos(1/x))dx=dt=t+C\int(2x\sin(1/x)-\cos(1/x))dx=\int dt=t+C

=x2sin(1/x)+C=x^2\sin(1/x)+C

01(2xsin(1/x)cos(1/x))dx\displaystyle\int_{0}^{1}(2x\sin(1/x)-\cos(1/x))dx

=limA0+A1(2xsin(1/x)cos(1/x))dx=\lim\limits_{A\to0^+}\displaystyle\int_{A}^{1}(2x\sin(1/x)-\cos(1/x))dx


=limA0+[x2sin(1/x)]1A=\lim\limits_{A\to0^+}[x^2\sin(1/x)]\begin{matrix} 1 \\ A \end{matrix}

=12sin(1/1)limA0+(A2sin(1/A))=1^2\sin(1/1)-\lim\limits_{A\to0^+}(A^2\sin(1/A))

Use the Squeeze Theorem


A2A2sin(1/A)A2,AR-A^2\leq A^2\sin(1/A)\leq A^2, A\in \R

limA0+(A2)=limA0+(A2)=0\lim\limits_{A\to0^+}(-A^2)=\lim\limits_{A\to0^+}(A^2)=0

Then by the Squeeze Theorem


limA0+(A2sin(1/A))=0\lim\limits_{A\to0^+}(A^2\sin(1/A))=0

Therefore


01(2xsin(1/x)cos(1/x))dx=sin(1)\displaystyle\int_{0}^{1}(2x\sin(1/x)-\cos(1/x))dx=\sin(1)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS