∫01(2xsin(1/x)−cos(1/x))dx Let t=x2sin(1/x). Then
dt=(2xsin(1/x)−cos(1/x))dx
∫(2xsin(1/x)−cos(1/x))dx=∫dt=t+C
=x2sin(1/x)+C
∫01(2xsin(1/x)−cos(1/x))dx
=A→0+lim∫A1(2xsin(1/x)−cos(1/x))dx
=A→0+lim[x2sin(1/x)]1A
=12sin(1/1)−A→0+lim(A2sin(1/A)) Use the Squeeze Theorem
−A2≤A2sin(1/A)≤A2,A∈R
A→0+lim(−A2)=A→0+lim(A2)=0 Then by the Squeeze Theorem
A→0+lim(A2sin(1/A))=0 Therefore
∫01(2xsin(1/x)−cos(1/x))dx=sin(1)
Comments