use the fundamental theorem of integral calculus to evaluate the integral integration of 0 to 1 ( 2xsinx 1/x - cos.1/x )dx
Let "t=x^2\\sin(1\/x)." Then
"\\int(2x\\sin(1\/x)-\\cos(1\/x))dx=\\int dt=t+C"
"=x^2\\sin(1\/x)+C"
"\\displaystyle\\int_{0}^{1}(2x\\sin(1\/x)-\\cos(1\/x))dx"
"=\\lim\\limits_{A\\to0^+}\\displaystyle\\int_{A}^{1}(2x\\sin(1\/x)-\\cos(1\/x))dx"
"=1^2\\sin(1\/1)-\\lim\\limits_{A\\to0^+}(A^2\\sin(1\/A))"
Use the Squeeze Theorem
"\\lim\\limits_{A\\to0^+}(-A^2)=\\lim\\limits_{A\\to0^+}(A^2)=0"
Then by the Squeeze Theorem
Therefore
Comments
Leave a comment