a. f(x)=x2 -3
f(h+3)=(h+3)2 -3=h2 +6h+9-3=h2 +6h+6
f(3)=32 -3=9-3=6
lim h → 0 f ( h + 3 ) − f ( 3 ) h = lim h → 0 ( h 2 + 6 h + 6 ) − ( 6 ) h \lim\limits_{h\rarr 0}\frac{f(h+3)-f(3)}{h}=\lim\limits_{h\rarr 0}\frac{(h^2+6h+6)-(6)}{h} h → 0 lim h f ( h + 3 ) − f ( 3 ) = h → 0 lim h ( h 2 + 6 h + 6 ) − ( 6 )
= lim h → 0 h 2 + 6 h + 6 − 6 h =\lim\limits_{h\rarr 0}\frac{h^2+6h+6-6}{h} = h → 0 lim h h 2 + 6 h + 6 − 6
= lim h → 0 h 2 + 6 h h =\lim\limits_{h\rarr 0}\frac{h^2+6h}{h} = h → 0 lim h h 2 + 6 h
= lim h → 0 h ( h + 6 ) h =\lim\limits_{h\rarr 0}\frac{h(h+6)}{h} = h → 0 lim h h ( h + 6 )
= lim h → 0 h + 6 =\lim\limits_{h\rarr 0}{h+6} = h → 0 lim h + 6
=0+6
=6
b. f(x)=x x − 2 \frac{x}{x-2} x − 2 x
f(h+3)=h + 3 h + 3 − 2 = h + 3 h + 1 \frac{h+3}{h+3-2}=\frac{h+3}{h+1} h + 3 − 2 h + 3 = h + 1 h + 3
f(3)=3 3 − 2 = 3 1 = 3 \frac{3}{3-2}=\frac{3}{1}=3 3 − 2 3 = 1 3 = 3
lim h → 0 f ( h + 3 ) − f ( 3 ) h = lim h → 0 h + 3 h + 1 − 3 h \lim\limits_{h\rarr 0}\frac{f(h+3)-f(3)}{h}=\lim\limits_{h\rarr 0}{\frac{\frac{h+3}{h+1}-3}{h}} h → 0 lim h f ( h + 3 ) − f ( 3 ) = h → 0 lim h h + 1 h + 3 − 3
lim h → 0 h + 3 h + 1 − 3 h = lim h → 0 h + 3 − 3 ( h + 1 ) h + 1 h \lim\limits_{h\rarr 0}{\frac{\frac{h+3}{h+1}-3}{h}}=\lim\limits_{h\rarr 0}{\frac{\frac{h+3-3(h+1)}{h+1}}{h}} h → 0 lim h h + 1 h + 3 − 3 = h → 0 lim h h + 1 h + 3 − 3 ( h + 1 )
=lim h → 0 h + 3 − 3 h − 3 h + 1 h \lim\limits_{h\rarr 0}{\frac{\frac{h+3-3h-3}{h+1}}{h}} h → 0 lim h h + 1 h + 3 − 3 h − 3
=lim h → 0 h − 3 h h + 1 h = lim h → 0 ( h − 3 h h + 1 ∗ 1 h ) \lim\limits_{h\rarr 0}{\frac{\frac{h-3h}{h+1}}{h}}=\lim\limits_{h\rarr 0}({{\frac{h-3h}{h+1}}*\frac{1}{h}}) h → 0 lim h h + 1 h − 3 h = h → 0 lim ( h + 1 h − 3 h ∗ h 1 )
=lim h → 0 h − 3 h ( h + 1 ) h = lim h → 0 h ( 1 − 3 ) h ( h + 1 ) \lim\limits_{h\rarr 0}{{\frac{h-3h}{(h+1)h}}}=\lim\limits_{h\rarr 0}{{\frac{h(1-3)}{h(h+1)}}} h → 0 lim ( h + 1 ) h h − 3 h = h → 0 lim h ( h + 1 ) h ( 1 − 3 )
= lim h → 0 1 − 3 h + 1 =\lim\limits_{h\rarr 0}{{\frac{1-3}{h+1}}} = h → 0 lim h + 1 1 − 3
= − 2 0 + 1 = − 2 1 =\frac{-2}{0+1}=\frac{-2}{1} = 0 + 1 − 2 = 1 − 2
=-2
c. f(x)=x + 1 \sqrt{x+1} x + 1
f(h+3)=h + 3 + 1 = h + 4 \sqrt{h+3+1}=\sqrt{h+4} h + 3 + 1 = h + 4
f(3)=3 + 1 = 4 = 2 \sqrt{3+1}=\sqrt{4}=2 3 + 1 = 4 = 2
lim h → 0 f ( h + 3 ) − f ( 3 ) h = lim h → 0 h + 4 − 2 h \lim\limits_{h\rarr 0}\frac{f(h+3)-f(3)}{h}=\lim\limits_{h\rarr 0}\frac{\sqrt{h+4}-2}{h} h → 0 lim h f ( h + 3 ) − f ( 3 ) = h → 0 lim h h + 4 − 2
lim h → 0 h + 4 − 2 h = lim h → 0 ( h + 4 − 2 h ∗ h + 4 + 2 h + 4 + 2 ) \lim\limits_{h\rarr 0}\frac{\sqrt{h+4}-2}{h}=\lim\limits_{h\rarr 0}(\frac{\sqrt{h+4}-2}{h}*\frac{\sqrt{h+4}+2}{\sqrt{h+4}+2}) h → 0 lim h h + 4 − 2 = h → 0 lim ( h h + 4 − 2 ∗ h + 4 + 2 h + 4 + 2 )
= lim h → 0 h + 4 + 2 h + 4 − 2 h + 4 − 4 h ( h + 4 + 2 ) =\lim\limits_{h\rarr 0}\frac{h+4+2\sqrt{h+4}-2\sqrt{h+4}-4}{h(\sqrt{h+4}+2)} = h → 0 lim h ( h + 4 + 2 ) h + 4 + 2 h + 4 − 2 h + 4 − 4
= lim h → 0 h h ( h + 4 + 2 ) = lim h → 0 1 h + 4 + 2 =\lim\limits_{h\rarr 0}\frac{h}{h(\sqrt{h+4}+2)}=\lim\limits_{h\rarr 0}\frac{1}{\sqrt{h+4}+2} = h → 0 lim h ( h + 4 + 2 ) h = h → 0 lim h + 4 + 2 1
= 1 0 + 4 + 2 = 1 4 + 2 =\frac{1}{\sqrt{0+4}+2}=\frac{1}{\sqrt{4}+2} = 0 + 4 + 2 1 = 4 + 2 1
= 1 2 + 2 =\frac{1}{2+2} = 2 + 2 1
=1 4 \frac{1}{4} 4 1
Comments