a. f(x)=x2-3
f(h+3)=(h+3)2-3=h2+6h+9-3=h2+6h+6
f(3)=32-3=9-3=6
h→0limhf(h+3)−f(3)=h→0limh(h2+6h+6)−(6)
=h→0limhh2+6h+6−6
=h→0limhh2+6h
=h→0limhh(h+6)
=h→0limh+6
=0+6
=6
b. f(x)=x−2x
f(h+3)=h+3−2h+3=h+1h+3
f(3)=3−23=13=3
h→0limhf(h+3)−f(3)=h→0limhh+1h+3−3
h→0limhh+1h+3−3=h→0limhh+1h+3−3(h+1)
=h→0limhh+1h+3−3h−3
=h→0limhh+1h−3h=h→0lim(h+1h−3h∗h1)
=h→0lim(h+1)hh−3h=h→0limh(h+1)h(1−3)
=h→0limh+11−3
=0+1−2=1−2
=-2
c. f(x)=x+1
f(h+3)=h+3+1=h+4
f(3)=3+1=4=2
h→0limhf(h+3)−f(3)=h→0limhh+4−2
h→0limhh+4−2=h→0lim(hh+4−2∗h+4+2h+4+2)
=h→0limh(h+4+2)h+4+2h+4−2h+4−4
=h→0limh(h+4+2)h=h→0limh+4+21
=0+4+21=4+21
=2+21
=41
Comments