) If F(x, y, z) = e xˆi + yzˆj − yz2ˆk, find the divergence of F at (0, 2, −1)
If F(x,y,z)=ex⋅i+yz⋅j−yz2⋅kF(x, y, z) = e^x\cdot i + yz\cdot j − yz^2\cdot kF(x,y,z)=ex⋅i+yz⋅j−yz2⋅k, let us find the divergence of FFF at (0,2,−1).(0, 2, −1).(0,2,−1).
It follows that
Div [F(x,y,z)]=∂(ex)∂x+∂(yz)∂y+∂(−yz2)∂z=ex+z−2yz,Div\ [F(x,y,z)]=\frac{\partial( e^x)}{\partial x} +\frac{\partial(yz)}{\partial y} +\frac{\partial(-yz^2)}{\partial z} =e^x+z-2yz,Div [F(x,y,z)]=∂x∂(ex)+∂y∂(yz)+∂z∂(−yz2)=ex+z−2yz,
and hence
Div [F(0,2,−1)]=e0−1−2⋅2(−1)=4.Div\ [F(0,2,-1)]=e^0-1-2\cdot 2(-1)=4.Div [F(0,2,−1)]=e0−1−2⋅2(−1)=4.
Answer: the divergence of FFF at (0,2,−1)(0, 2, −1)(0,2,−1) is equal to 4.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments