Find lim as h→0 f(x+h)-f(x)/h
a. f(x) = 1-x/x+2
b. f(x) = sqrt x²-3
(a) "\\lim\\nolimits_h\\to0\\lbrack\\frac{f(x+h)-f(x)}{h}\\rbrack"
"=\\lim\\nolimits_h\\to0\\lbrack\\frac{{\\frac{1-(x+h)}{x+h+2}}-{\\frac{1-x}{x+2}}}{h}\\rbrack"
"=\\lbrack\\frac{{\\frac{1-(x+h)}{x+h+2}}-{\\frac{1-x}{x+2}}}{h}\\rbrack"
"=\\lim\\nolimits_h\\to0\\lbrack\\frac{((x+2)(1-x-h))-((1-x)(x+h+2))}{h(x+h+2)(x+2)}\\rbrack"
"=\\frac{3}{2\\sqrt{-x+1}\\left((x+2)^{\\smash{\\frac{3}{2}}}\\right)}"
(b) the derivative of f(x) with respect to x is defined as:
"\\lim\\nolimits_h\\to0\\lbrack\\frac{f(x+h)-f(x)}{h}\\rbrack"
= "\\lim\\nolimits_h\\to0\\lbrack\\frac{\\sqrt{\\left((x+h)^{\\smash{2}}\\right)-3)}-\\sqrt{\\left((x)^{\\smash{2}}-3\\right)}}{h}\\rbrack"
"=\\lbrack\\frac{\\sqrt{\\left((x+h)^{\\smash{2}}\\right)-3)}-\\sqrt{\\left((x)^{\\smash{2}}-3\\right)}}{h}\\rbrack"
"=\\lim\\nolimits_h\\to0\\lbrack\\frac{\\sqrt{\\left((x+h)^{\\smash{2}}\\right)-3)}-\\sqrt{\\left((x)^{\\smash{2}}-3\\right)}}{h}\\rbrack\\lbrack\\frac{\\sqrt{\\left((x+h)^{\\smash{2}}\\right)-3)}+\\sqrt{\\left((x)^{\\smash{2}}-3\\right)}}{\\sqrt{\\left((x+h)^{\\smash{2}}\\right)-3)+\\sqrt{\\left((x^{\\smash{2}}\\right)-3)}}}\\rbrack"
"=\\frac{x}{\\sqrt{\\left(x^{\\smash{2}}\\right)-3}}"
Comments
Leave a comment