(a) limh→0[hf(x+h)−f(x)]
=limh→0[hx+h+21−(x+h)−x+21−x]
=[hx+h+21−(x+h)−x+21−x]
=limh→0[h(x+h+2)(x+2)((x+2)(1−x−h))−((1−x)(x+h+2))]
=2−x+1((x+2)23)3
(b) the derivative of f(x) with respect to x is defined as:
limh→0[hf(x+h)−f(x)]
= limh→0[h((x+h)2)−3)−((x)2−3)]
=[h((x+h)2)−3)−((x)2−3)]
=limh→0[h((x+h)2)−3)−((x)2−3)][((x+h)2)−3)+((x2)−3)((x+h)2)−3)+((x)2−3)]
=(x2)−3x
Comments