Question #260156

Find lim as h→0 f(x+h)-f(x)/h

a. f(x) = 1-x/x+2

b. f(x) = sqrt x²-3


1
Expert's answer
2021-11-03T10:06:26-0400

(a) limh0[f(x+h)f(x)h]\lim\nolimits_h\to0\lbrack\frac{f(x+h)-f(x)}{h}\rbrack


=limh0[1(x+h)x+h+21xx+2h]=\lim\nolimits_h\to0\lbrack\frac{{\frac{1-(x+h)}{x+h+2}}-{\frac{1-x}{x+2}}}{h}\rbrack


=[1(x+h)x+h+21xx+2h]=\lbrack\frac{{\frac{1-(x+h)}{x+h+2}}-{\frac{1-x}{x+2}}}{h}\rbrack


=limh0[((x+2)(1xh))((1x)(x+h+2))h(x+h+2)(x+2)]=\lim\nolimits_h\to0\lbrack\frac{((x+2)(1-x-h))-((1-x)(x+h+2))}{h(x+h+2)(x+2)}\rbrack


=32x+1((x+2)32)=\frac{3}{2\sqrt{-x+1}\left((x+2)^{\smash{\frac{3}{2}}}\right)}



(b) the derivative of f(x) with respect to x is defined as:

limh0[f(x+h)f(x)h]\lim\nolimits_h\to0\lbrack\frac{f(x+h)-f(x)}{h}\rbrack


= limh0[((x+h)2)3)((x)23)h]\lim\nolimits_h\to0\lbrack\frac{\sqrt{\left((x+h)^{\smash{2}}\right)-3)}-\sqrt{\left((x)^{\smash{2}}-3\right)}}{h}\rbrack


=[((x+h)2)3)((x)23)h]=\lbrack\frac{\sqrt{\left((x+h)^{\smash{2}}\right)-3)}-\sqrt{\left((x)^{\smash{2}}-3\right)}}{h}\rbrack

=limh0[((x+h)2)3)((x)23)h][((x+h)2)3)+((x)23)((x+h)2)3)+((x2)3)]=\lim\nolimits_h\to0\lbrack\frac{\sqrt{\left((x+h)^{\smash{2}}\right)-3)}-\sqrt{\left((x)^{\smash{2}}-3\right)}}{h}\rbrack\lbrack\frac{\sqrt{\left((x+h)^{\smash{2}}\right)-3)}+\sqrt{\left((x)^{\smash{2}}-3\right)}}{\sqrt{\left((x+h)^{\smash{2}}\right)-3)+\sqrt{\left((x^{\smash{2}}\right)-3)}}}\rbrack


=x(x2)3=\frac{x}{\sqrt{\left(x^{\smash{2}}\right)-3}}





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS