(a) lim h → 0 [ f ( x + h ) − f ( x ) h ] \lim\nolimits_h\to0\lbrack\frac{f(x+h)-f(x)}{h}\rbrack lim h → 0 [ h f ( x + h ) − f ( x ) ]
= lim h → 0 [ 1 − ( x + h ) x + h + 2 − 1 − x x + 2 h ] =\lim\nolimits_h\to0\lbrack\frac{{\frac{1-(x+h)}{x+h+2}}-{\frac{1-x}{x+2}}}{h}\rbrack = lim h → 0 [ h x + h + 2 1 − ( x + h ) − x + 2 1 − x ]
= [ 1 − ( x + h ) x + h + 2 − 1 − x x + 2 h ] =\lbrack\frac{{\frac{1-(x+h)}{x+h+2}}-{\frac{1-x}{x+2}}}{h}\rbrack = [ h x + h + 2 1 − ( x + h ) − x + 2 1 − x ]
= lim h → 0 [ ( ( x + 2 ) ( 1 − x − h ) ) − ( ( 1 − x ) ( x + h + 2 ) ) h ( x + h + 2 ) ( x + 2 ) ] =\lim\nolimits_h\to0\lbrack\frac{((x+2)(1-x-h))-((1-x)(x+h+2))}{h(x+h+2)(x+2)}\rbrack = lim h → 0 [ h ( x + h + 2 ) ( x + 2 ) (( x + 2 ) ( 1 − x − h )) − (( 1 − x ) ( x + h + 2 )) ]
= 3 2 − x + 1 ( ( x + 2 ) 3 2 ) =\frac{3}{2\sqrt{-x+1}\left((x+2)^{\smash{\frac{3}{2}}}\right)} = 2 − x + 1 ( ( x + 2 ) 2 3 ) 3
(b) the derivative of f(x) with respect to x is defined as:
lim h → 0 [ f ( x + h ) − f ( x ) h ] \lim\nolimits_h\to0\lbrack\frac{f(x+h)-f(x)}{h}\rbrack lim h → 0 [ h f ( x + h ) − f ( x ) ]
= lim h → 0 [ ( ( x + h ) 2 ) − 3 ) − ( ( x ) 2 − 3 ) h ] \lim\nolimits_h\to0\lbrack\frac{\sqrt{\left((x+h)^{\smash{2}}\right)-3)}-\sqrt{\left((x)^{\smash{2}}-3\right)}}{h}\rbrack lim h → 0 [ h ( ( x + h ) 2 ) − 3 ) − ( ( x ) 2 − 3 ) ]
= [ ( ( x + h ) 2 ) − 3 ) − ( ( x ) 2 − 3 ) h ] =\lbrack\frac{\sqrt{\left((x+h)^{\smash{2}}\right)-3)}-\sqrt{\left((x)^{\smash{2}}-3\right)}}{h}\rbrack = [ h ( ( x + h ) 2 ) − 3 ) − ( ( x ) 2 − 3 ) ]
= lim h → 0 [ ( ( x + h ) 2 ) − 3 ) − ( ( x ) 2 − 3 ) h ] [ ( ( x + h ) 2 ) − 3 ) + ( ( x ) 2 − 3 ) ( ( x + h ) 2 ) − 3 ) + ( ( x 2 ) − 3 ) ] =\lim\nolimits_h\to0\lbrack\frac{\sqrt{\left((x+h)^{\smash{2}}\right)-3)}-\sqrt{\left((x)^{\smash{2}}-3\right)}}{h}\rbrack\lbrack\frac{\sqrt{\left((x+h)^{\smash{2}}\right)-3)}+\sqrt{\left((x)^{\smash{2}}-3\right)}}{\sqrt{\left((x+h)^{\smash{2}}\right)-3)+\sqrt{\left((x^{\smash{2}}\right)-3)}}}\rbrack = lim h → 0 [ h ( ( x + h ) 2 ) − 3 ) − ( ( x ) 2 − 3 ) ] [ ( ( x + h ) 2 ) − 3 ) + ( ( x 2 ) − 3 ) ( ( x + h ) 2 ) − 3 ) + ( ( x ) 2 − 3 ) ]
= x ( x 2 ) − 3 =\frac{x}{\sqrt{\left(x^{\smash{2}}\right)-3}} = ( x 2 ) − 3 x
Comments