Question #260164

Find the limit of each given transcendental function as x→c

a. lim x→-1 (2ln x+3/2x+5)

b. lim x→0 (e^3x - 1/ e^x -1)

c. lim x→0 (2^2x - 2^x+1 +1 / 2^x -1)

d. lim x→0 (3tan²x/2x²)

e. lim x→0 (1-cos2x/sin2x)

f. lim θ→0 (5θ/tan2θ)

g. lim x→0 (2x²-6x/sin2x)

h. lim t→0 [4t²/(1-cos² (t/2))]


1
Expert's answer
2021-11-07T15:59:54-0500

a.

xlim1 lnx+32x+5x\xmapsto {lim}-1\space \frac{ln x+3}{2x+5}

=xlim1 lnx2+32x+5=x\xmapsto{lim}-1\space \frac{ln x^2+3}{2x+5}

=ln(1)2+32(1)+5=\frac{ln(-1)^2+3}{2(-1)+5}

=0+33=\frac{0+3}{3}

=1=1


b.

xlim0 e3x1ex1x\xmapsto{lim}0\space \frac{e^{3x}-1}{e^x-1}

xlim0 e3x1x.1ex1xx\xmapsto{lim}0\space \frac{e^{3x}-1}{x}.\frac{1}{\frac{e^x-1}{x}}

=3(1).11=3=3(1).\frac{1}{1}=3


c.

xlim0 22x2x+12x1x\xmapsto{lim}0\space \frac{2^{2x}-2^x+1}{2^x-1}

=11+111==\frac{1-1+1}{1-1}=\infin


d.

According to L' Hospital's Rule

xlimc f(x)g(x)=xlimc f(x)g(x)x\xmapsto{lim}c\space \frac{f(x)}{g(x)}=x\xmapsto{lim}c\space \frac{f'(x)}{g'(x)}

xlim0 3tan2x2x2x\xmapsto{lim}0\space \frac{3tan^2x}{2x^2}

3tan2x2x2=00\frac{3tan^2x}{2x^2}=\frac{0}{0} , so we can apply L' Hospital's rule

xlim0 3tan2x2x2=xlim0 ddx3tan2xddx2x2x\xmapsto{lim}0\space \frac{3tan^2x}{2x^2}=x\xmapsto{lim}0\space \frac{\frac{d}{dx}3tan^2x}{\frac{d}{dx}2x^2}

=64[(1×1)+0]=32=\frac{6}{4}[(1\times1)+0]=\frac{3}{2}


e.

xlim0 1cos2xsin2x=1cososin0=110=0x\xmapsto{lim}0\space \frac{1-cos2x}{sin2 x}=\frac{1-cos o}{sin 0}=\frac{1-1}{0}=0

=xlim0 ddx(1cos2xddx(sin2x)=x\xmapsto{lim}0\space \frac{\frac{d}{dx}(1-cos2x}{\frac{d}{dx}(sin 2x)}

xlim002 sin2x2 cos2xx\xmapsto{lim}0\frac{0-2\space sin 2 x}{2\space cos 2x}

=2sin02cos0=0=\frac{2 sin 0}{2 cos 0}=0


f.

θlim05θtan2θ=0\theta\xmapsto{lim}0\frac{5\theta}{tan2\theta}=0

θlim05θtan2θ=θlim0 ddx5θddxtan2θ\theta\xmapsto{lim}0\frac{5\theta}{tan 2\theta}=\theta\xmapsto{lim}0\space \frac{\frac{d}{dx}5\theta}{\frac{d}{dx}tan 2\theta}

=52 sin22θ=52×1=52=\frac{5}{2\space sin^22\theta}=\frac{5}{2\times 1}=\frac{5}{2}


g.

xlim02x26xsin2xx\xmapsto{lim}0\frac{2x^2-6x}{sin 2x}

=xlim0 ddx(2x26x)ddxsin2x=x\xmapsto{lim}0\space \frac{\frac{d}{dx}(2x^2-6x)}{\frac{d}{dx}{sin 2x}}

xlim0 2x26xsin2x=3x\xmapsto{lim}0\space \frac{2x^2-6x}{sin 2x}=-3


h.

xlim0 4t21cos2t2=xlim0 4t22sin2tx\xmapsto{lim}0\space \frac{4t^2}{1-cos^2 \frac{t}{2}}=x\xmapsto{lim}0\space \frac{4t^2}{2 sin^2t}


=xlim0 8t4 sin t cost=xlim0 8t2 sin 2t=x\xmapsto{lim}0\space \frac{8t}{4 \space sin \space t \space cos t}=x\xmapsto{lim}0\space \frac{8t}{2 \space sin \space 2t}

=84cos0=84=2=\frac{8}{4 cos 0}=\frac{8}{4}=2

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS