Find the limit of each given transcendental function as x→c
a. lim x→-1 (2ln x+3/2x+5)
b. lim x→0 (e^3x - 1/ e^x -1)
c. lim x→0 (2^2x - 2^x+1 +1 / 2^x -1)
d. lim x→0 (3tan²x/2x²)
e. lim x→0 (1-cos2x/sin2x)
f. lim θ→0 (5θ/tan2θ)
g. lim x→0 (2x²-6x/sin2x)
h. lim t→0 [4t²/(1-cos² (t/2))]
a.
"x\\xmapsto {lim}-1\\space \\frac{ln x+3}{2x+5}"
"=x\\xmapsto{lim}-1\\space \\frac{ln x^2+3}{2x+5}"
"=\\frac{ln(-1)^2+3}{2(-1)+5}"
"=\\frac{0+3}{3}"
"=1"
b.
"x\\xmapsto{lim}0\\space \\frac{e^{3x}-1}{e^x-1}"
"x\\xmapsto{lim}0\\space \\frac{e^{3x}-1}{x}.\\frac{1}{\\frac{e^x-1}{x}}"
"=3(1).\\frac{1}{1}=3"
c.
"x\\xmapsto{lim}0\\space \\frac{2^{2x}-2^x+1}{2^x-1}"
"=\\frac{1-1+1}{1-1}=\\infin"
d.
According to L' Hospital's Rule
"x\\xmapsto{lim}c\\space \\frac{f(x)}{g(x)}=x\\xmapsto{lim}c\\space \\frac{f'(x)}{g'(x)}"
"x\\xmapsto{lim}0\\space \\frac{3tan^2x}{2x^2}"
"\\frac{3tan^2x}{2x^2}=\\frac{0}{0}" , so we can apply L' Hospital's rule
"x\\xmapsto{lim}0\\space \\frac{3tan^2x}{2x^2}=x\\xmapsto{lim}0\\space \\frac{\\frac{d}{dx}3tan^2x}{\\frac{d}{dx}2x^2}"
"=\\frac{6}{4}[(1\\times1)+0]=\\frac{3}{2}"
e.
"x\\xmapsto{lim}0\\space \\frac{1-cos2x}{sin2 x}=\\frac{1-cos o}{sin 0}=\\frac{1-1}{0}=0"
"=x\\xmapsto{lim}0\\space \\frac{\\frac{d}{dx}(1-cos2x}{\\frac{d}{dx}(sin 2x)}"
"x\\xmapsto{lim}0\\frac{0-2\\space sin 2 x}{2\\space cos 2x}"
"=\\frac{2 sin 0}{2 cos 0}=0"
f.
"\\theta\\xmapsto{lim}0\\frac{5\\theta}{tan2\\theta}=0"
"\\theta\\xmapsto{lim}0\\frac{5\\theta}{tan 2\\theta}=\\theta\\xmapsto{lim}0\\space \\frac{\\frac{d}{dx}5\\theta}{\\frac{d}{dx}tan 2\\theta}"
"=\\frac{5}{2\\space sin^22\\theta}=\\frac{5}{2\\times 1}=\\frac{5}{2}"
g.
"x\\xmapsto{lim}0\\frac{2x^2-6x}{sin 2x}"
"=x\\xmapsto{lim}0\\space \\frac{\\frac{d}{dx}(2x^2-6x)}{\\frac{d}{dx}{sin 2x}}"
"x\\xmapsto{lim}0\\space \\frac{2x^2-6x}{sin 2x}=-3"
h.
"x\\xmapsto{lim}0\\space \\frac{4t^2}{1-cos^2 \\frac{t}{2}}=x\\xmapsto{lim}0\\space \\frac{4t^2}{2 sin^2t}"
"=x\\xmapsto{lim}0\\space \\frac{8t}{4 \\space sin \\space t \\space cos t}=x\\xmapsto{lim}0\\space \\frac{8t}{2 \\space sin \\space 2t}"
"=\\frac{8}{4 cos 0}=\\frac{8}{4}=2"
Comments
Leave a comment