a.
xlim−1 2x+5lnx+3
=xlim−1 2x+5lnx2+3
=2(−1)+5ln(−1)2+3
=30+3
=1
b.
xlim0 ex−1e3x−1
xlim0 xe3x−1.xex−11
=3(1).11=3
c.
xlim0 2x−122x−2x+1
=1−11−1+1=∞
d.
According to L' Hospital's Rule
xlimc g(x)f(x)=xlimc g′(x)f′(x)
xlim0 2x23tan2x
2x23tan2x=00 , so we can apply L' Hospital's rule
xlim0 2x23tan2x=xlim0 dxd2x2dxd3tan2x
=46[(1×1)+0]=23
e.
xlim0 sin2x1−cos2x=sin01−coso=01−1=0
=xlim0 dxd(sin2x)dxd(1−cos2x
xlim02 cos2x0−2 sin2x
=2cos02sin0=0
f.
θlim0tan2θ5θ=0
θlim0tan2θ5θ=θlim0 dxdtan2θdxd5θ
=2 sin22θ5=2×15=25
g.
xlim0sin2x2x2−6x
=xlim0 dxdsin2xdxd(2x2−6x)
xlim0 sin2x2x2−6x=−3
h.
xlim0 1−cos22t4t2=xlim0 2sin2t4t2
=xlim0 4 sin t cost8t=xlim0 2 sin 2t8t
=4cos08=48=2
Comments