a.
x ↦ l i m − 1 l n x + 3 2 x + 5 x\xmapsto {lim}-1\space \frac{ln x+3}{2x+5} x l im − 1 2 x + 5 l n x + 3
= x ↦ l i m − 1 l n x 2 + 3 2 x + 5 =x\xmapsto{lim}-1\space \frac{ln x^2+3}{2x+5} = x l im − 1 2 x + 5 l n x 2 + 3
= l n ( − 1 ) 2 + 3 2 ( − 1 ) + 5 =\frac{ln(-1)^2+3}{2(-1)+5} = 2 ( − 1 ) + 5 l n ( − 1 ) 2 + 3
= 0 + 3 3 =\frac{0+3}{3} = 3 0 + 3
= 1 =1 = 1
b.
x ↦ l i m 0 e 3 x − 1 e x − 1 x\xmapsto{lim}0\space \frac{e^{3x}-1}{e^x-1} x l im 0 e x − 1 e 3 x − 1
x ↦ l i m 0 e 3 x − 1 x . 1 e x − 1 x x\xmapsto{lim}0\space \frac{e^{3x}-1}{x}.\frac{1}{\frac{e^x-1}{x}} x l im 0 x e 3 x − 1 . x e x − 1 1
= 3 ( 1 ) . 1 1 = 3 =3(1).\frac{1}{1}=3 = 3 ( 1 ) . 1 1 = 3
c.
x ↦ l i m 0 2 2 x − 2 x + 1 2 x − 1 x\xmapsto{lim}0\space \frac{2^{2x}-2^x+1}{2^x-1} x l im 0 2 x − 1 2 2 x − 2 x + 1
= 1 − 1 + 1 1 − 1 = ∞ =\frac{1-1+1}{1-1}=\infin = 1 − 1 1 − 1 + 1 = ∞
d.
According to L' Hospital's Rule
x ↦ l i m c f ( x ) g ( x ) = x ↦ l i m c f ′ ( x ) g ′ ( x ) x\xmapsto{lim}c\space \frac{f(x)}{g(x)}=x\xmapsto{lim}c\space \frac{f'(x)}{g'(x)} x l im c g ( x ) f ( x ) = x l im c g ′ ( x ) f ′ ( x )
x ↦ l i m 0 3 t a n 2 x 2 x 2 x\xmapsto{lim}0\space \frac{3tan^2x}{2x^2} x l im 0 2 x 2 3 t a n 2 x
3 t a n 2 x 2 x 2 = 0 0 \frac{3tan^2x}{2x^2}=\frac{0}{0} 2 x 2 3 t a n 2 x = 0 0 , so we can apply L' Hospital's rule
x ↦ l i m 0 3 t a n 2 x 2 x 2 = x ↦ l i m 0 d d x 3 t a n 2 x d d x 2 x 2 x\xmapsto{lim}0\space \frac{3tan^2x}{2x^2}=x\xmapsto{lim}0\space \frac{\frac{d}{dx}3tan^2x}{\frac{d}{dx}2x^2} x l im 0 2 x 2 3 t a n 2 x = x l im 0 d x d 2 x 2 d x d 3 t a n 2 x
= 6 4 [ ( 1 × 1 ) + 0 ] = 3 2 =\frac{6}{4}[(1\times1)+0]=\frac{3}{2} = 4 6 [( 1 × 1 ) + 0 ] = 2 3
e.
x ↦ l i m 0 1 − c o s 2 x s i n 2 x = 1 − c o s o s i n 0 = 1 − 1 0 = 0 x\xmapsto{lim}0\space \frac{1-cos2x}{sin2 x}=\frac{1-cos o}{sin 0}=\frac{1-1}{0}=0 x l im 0 s in 2 x 1 − cos 2 x = s in 0 1 − coso = 0 1 − 1 = 0
= x ↦ l i m 0 d d x ( 1 − c o s 2 x d d x ( s i n 2 x ) =x\xmapsto{lim}0\space \frac{\frac{d}{dx}(1-cos2x}{\frac{d}{dx}(sin 2x)} = x l im 0 d x d ( s in 2 x ) d x d ( 1 − cos 2 x
x ↦ l i m 0 0 − 2 s i n 2 x 2 c o s 2 x x\xmapsto{lim}0\frac{0-2\space sin 2 x}{2\space cos 2x} x l im 0 2 cos 2 x 0 − 2 s in 2 x
= 2 s i n 0 2 c o s 0 = 0 =\frac{2 sin 0}{2 cos 0}=0 = 2 cos 0 2 s in 0 = 0
f.
θ ↦ l i m 0 5 θ t a n 2 θ = 0 \theta\xmapsto{lim}0\frac{5\theta}{tan2\theta}=0 θ l im 0 t an 2 θ 5 θ = 0
θ ↦ l i m 0 5 θ t a n 2 θ = θ ↦ l i m 0 d d x 5 θ d d x t a n 2 θ \theta\xmapsto{lim}0\frac{5\theta}{tan 2\theta}=\theta\xmapsto{lim}0\space \frac{\frac{d}{dx}5\theta}{\frac{d}{dx}tan 2\theta} θ l im 0 t an 2 θ 5 θ = θ l im 0 d x d t an 2 θ d x d 5 θ
= 5 2 s i n 2 2 θ = 5 2 × 1 = 5 2 =\frac{5}{2\space sin^22\theta}=\frac{5}{2\times 1}=\frac{5}{2} = 2 s i n 2 2 θ 5 = 2 × 1 5 = 2 5
g.
x ↦ l i m 0 2 x 2 − 6 x s i n 2 x x\xmapsto{lim}0\frac{2x^2-6x}{sin 2x} x l im 0 s in 2 x 2 x 2 − 6 x
= x ↦ l i m 0 d d x ( 2 x 2 − 6 x ) d d x s i n 2 x =x\xmapsto{lim}0\space \frac{\frac{d}{dx}(2x^2-6x)}{\frac{d}{dx}{sin 2x}} = x l im 0 d x d s in 2 x d x d ( 2 x 2 − 6 x )
x ↦ l i m 0 2 x 2 − 6 x s i n 2 x = − 3 x\xmapsto{lim}0\space \frac{2x^2-6x}{sin 2x}=-3 x l im 0 s in 2 x 2 x 2 − 6 x = − 3
h.
x ↦ l i m 0 4 t 2 1 − c o s 2 t 2 = x ↦ l i m 0 4 t 2 2 s i n 2 t x\xmapsto{lim}0\space \frac{4t^2}{1-cos^2 \frac{t}{2}}=x\xmapsto{lim}0\space \frac{4t^2}{2 sin^2t} x l im 0 1 − co s 2 2 t 4 t 2 = x l im 0 2 s i n 2 t 4 t 2
= x ↦ l i m 0 8 t 4 s i n t c o s t = x ↦ l i m 0 8 t 2 s i n 2 t =x\xmapsto{lim}0\space \frac{8t}{4 \space sin \space t \space cos t}=x\xmapsto{lim}0\space \frac{8t}{2 \space sin \space 2t} = x l im 0 4 s in t cos t 8 t = x l im 0 2 s in 2 t 8 t
= 8 4 c o s 0 = 8 4 = 2 =\frac{8}{4 cos 0}=\frac{8}{4}=2 = 4 cos 0 8 = 4 8 = 2
Comments