Answer to Question #257880 in Calculus for JaytheCreator

Question #257880

Solve the B.V.P.


𝑒𝑑 = 𝑒π‘₯π‘₯ + 𝑒; { 𝑒(π‘₯, 0) = cos π‘₯ 0 < π‘₯ < 1 𝑒(0,𝑑) = 0, 𝑒(1,𝑑) = 0Β 


1
Expert's answer
2021-11-01T17:36:46-0400

We use method of separating variables.

u(x.t)=X(x)"\\cdot" T(t);

"T'(t)\\cdot X(x)=T(t)\\cdot X''(x)+T(t)\\cdot X(x)"

Divide both parts by "T(t)\\cdot X(x)"

"\\frac{T'(t)}{T(t)}-1=\\frac{X''(x)}{X(x)}"

Left part depend on t only but right part on x, it possible if both parts are equal to some constant "\\lambda"

"\\frac{T'(t)}{T(t)}-1=\\frac{X''(x)}{X(x)}=\\lambda"

"\\begin{cases}\n X''(x)-\\lambda\\cdot X(x)=0; \\\\\n X(0)=0,\\space X(1)=0.\n\\end{cases}"

This is standard bvp which has solution if "\\lambda<0" and

"X(x)=C_1\\cdot sin(\\sqrt{-\\lambda}\\cdot x)+C_2\\cdot cos(\\sqrt{-\\lambda}\\cdot x)" -general solution.

Using boundary conditions we have:

"X(0)=C_2\\cdot cos(0)=C_2=0\\rarr X(x)=C_1\\cdot sin(\\sqrt{-\\lambda}\\cdot x)"

"X(1)=C_1\\cdot sin(\\sqrt{-\\lambda})=0;\n\\sqrt{-\\lambda}=\\pi\\cdot n,n=1,2,..."

"\\lambda=-(\\pi\\cdot n)^2;"

Now we have set of solutions for n=1,2,...

"X_n(x)=C_n\\cdot sin(\\pi\\cdot n\\cdot x),n=1,2,..."

Further we shoulf find "T_n(t)" from an equation:

"\\frac{T'(t)}{T(t)}-1=-(\\pi\\cdot n)^2;"

"\\left(ln(T(t)) \\right)'=1-(\\pi\\cdot n)^2"

"ln(T(t))=\\left( 1-(\\pi\\cdot n)^2 \\right)\\cdot t+C"

The const C may be omitted because we have const Cn in Xn

Thus "T_n(t)=e^{\\left( 1-(\\pi\\cdot n)^2 \\right)\\cdot t}=e^t\\cdot e^{-(\\pi\\cdot n)^2\\cdot t}"

For u(x,t) we use series

"u(x,t)=\\sum_{n=1}^{\\infty} C_nT_n(t)X_n(x)=\\\\e^{t}\\cdot \\sum_{n=1}^{\\infty}C_ne^{-(\\pi\\cdot n)^2\\cdot t} sin(\\pi\\cdot n\\cdot x)"

Nou we take in account initial condition u(0,x)=cos(x) and have

"e^{0}\\cdot \\sum_{n=1}^{\\infty}C_ne^{-(\\pi\\cdot n)^2\\cdot 0} sin(\\pi\\cdot n\\cdot x)=\\\\ \\sum_{n=1}^{\\infty}C_n sin(\\pi\\cdot n\\cdot x)=cos(x)"

This is Furier series problem which has solution

"C_n=2\\pi n\\frac{cos(\\pi n)\\cdot cos(1)-1}{\\pi^2n^2}"

Thus

u(x,t)= "2\\pi e^{t}\\cdot \\sum_{n=1}^{\\infty}\\frac{cos(\\pi n)\\cdot cos(1)-1}{\\pi^2n^2}e^{-(\\pi\\cdot n)^2\\cdot t} sin(\\pi\\cdot n\\cdot x)"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS