Question #257880

Solve the B.V.P.


𝑢𝑡 = 𝑢𝑥𝑥 + 𝑢; { 𝑢(𝑥, 0) = cos 𝑥 0 < 𝑥 < 1 𝑢(0,𝑡) = 0, 𝑢(1,𝑡) = 0 


1
Expert's answer
2021-11-01T17:36:46-0400

We use method of separating variables.

u(x.t)=X(x)\cdot T(t);

T(t)X(x)=T(t)X(x)+T(t)X(x)T'(t)\cdot X(x)=T(t)\cdot X''(x)+T(t)\cdot X(x)

Divide both parts by T(t)X(x)T(t)\cdot X(x)

T(t)T(t)1=X(x)X(x)\frac{T'(t)}{T(t)}-1=\frac{X''(x)}{X(x)}

Left part depend on t only but right part on x, it possible if both parts are equal to some constant λ\lambda

T(t)T(t)1=X(x)X(x)=λ\frac{T'(t)}{T(t)}-1=\frac{X''(x)}{X(x)}=\lambda

{X(x)λX(x)=0;X(0)=0, X(1)=0.\begin{cases} X''(x)-\lambda\cdot X(x)=0; \\ X(0)=0,\space X(1)=0. \end{cases}

This is standard bvp which has solution if λ<0\lambda<0 and

X(x)=C1sin(λx)+C2cos(λx)X(x)=C_1\cdot sin(\sqrt{-\lambda}\cdot x)+C_2\cdot cos(\sqrt{-\lambda}\cdot x) -general solution.

Using boundary conditions we have:

X(0)=C2cos(0)=C2=0X(x)=C1sin(λx)X(0)=C_2\cdot cos(0)=C_2=0\rarr X(x)=C_1\cdot sin(\sqrt{-\lambda}\cdot x)

X(1)=C1sin(λ)=0;λ=πn,n=1,2,...X(1)=C_1\cdot sin(\sqrt{-\lambda})=0; \sqrt{-\lambda}=\pi\cdot n,n=1,2,...

λ=(πn)2;\lambda=-(\pi\cdot n)^2;

Now we have set of solutions for n=1,2,...

Xn(x)=Cnsin(πnx),n=1,2,...X_n(x)=C_n\cdot sin(\pi\cdot n\cdot x),n=1,2,...

Further we shoulf find Tn(t)T_n(t) from an equation:

T(t)T(t)1=(πn)2;\frac{T'(t)}{T(t)}-1=-(\pi\cdot n)^2;

(ln(T(t)))=1(πn)2\left(ln(T(t)) \right)'=1-(\pi\cdot n)^2

ln(T(t))=(1(πn)2)t+Cln(T(t))=\left( 1-(\pi\cdot n)^2 \right)\cdot t+C

The const C may be omitted because we have const Cn in Xn

Thus Tn(t)=e(1(πn)2)t=ete(πn)2tT_n(t)=e^{\left( 1-(\pi\cdot n)^2 \right)\cdot t}=e^t\cdot e^{-(\pi\cdot n)^2\cdot t}

For u(x,t) we use series

u(x,t)=n=1CnTn(t)Xn(x)=etn=1Cne(πn)2tsin(πnx)u(x,t)=\sum_{n=1}^{\infty} C_nT_n(t)X_n(x)=\\e^{t}\cdot \sum_{n=1}^{\infty}C_ne^{-(\pi\cdot n)^2\cdot t} sin(\pi\cdot n\cdot x)

Nou we take in account initial condition u(0,x)=cos(x) and have

e0n=1Cne(πn)20sin(πnx)=n=1Cnsin(πnx)=cos(x)e^{0}\cdot \sum_{n=1}^{\infty}C_ne^{-(\pi\cdot n)^2\cdot 0} sin(\pi\cdot n\cdot x)=\\ \sum_{n=1}^{\infty}C_n sin(\pi\cdot n\cdot x)=cos(x)

This is Furier series problem which has solution

Cn=2πncos(πn)cos(1)1π2n2C_n=2\pi n\frac{cos(\pi n)\cdot cos(1)-1}{\pi^2n^2}

Thus

u(x,t)= 2πetn=1cos(πn)cos(1)1π2n2e(πn)2tsin(πnx)2\pi e^{t}\cdot \sum_{n=1}^{\infty}\frac{cos(\pi n)\cdot cos(1)-1}{\pi^2n^2}e^{-(\pi\cdot n)^2\cdot t} sin(\pi\cdot n\cdot x)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS