We use method of separating variables.
u(x.t)=X(x)⋅ T(t);
T′(t)⋅X(x)=T(t)⋅X′′(x)+T(t)⋅X(x)
Divide both parts by T(t)⋅X(x)
T(t)T′(t)−1=X(x)X′′(x)
Left part depend on t only but right part on x, it possible if both parts are equal to some constant λ
T(t)T′(t)−1=X(x)X′′(x)=λ
{X′′(x)−λ⋅X(x)=0;X(0)=0, X(1)=0.
This is standard bvp which has solution if λ<0 and
X(x)=C1⋅sin(−λ⋅x)+C2⋅cos(−λ⋅x) -general solution.
Using boundary conditions we have:
X(0)=C2⋅cos(0)=C2=0→X(x)=C1⋅sin(−λ⋅x)
X(1)=C1⋅sin(−λ)=0;−λ=π⋅n,n=1,2,...
λ=−(π⋅n)2;
Now we have set of solutions for n=1,2,...
Xn(x)=Cn⋅sin(π⋅n⋅x),n=1,2,...
Further we shoulf find Tn(t) from an equation:
T(t)T′(t)−1=−(π⋅n)2;
(ln(T(t)))′=1−(π⋅n)2
ln(T(t))=(1−(π⋅n)2)⋅t+C
The const C may be omitted because we have const Cn in Xn
Thus Tn(t)=e(1−(π⋅n)2)⋅t=et⋅e−(π⋅n)2⋅t
For u(x,t) we use series
u(x,t)=∑n=1∞CnTn(t)Xn(x)=et⋅∑n=1∞Cne−(π⋅n)2⋅tsin(π⋅n⋅x)
Nou we take in account initial condition u(0,x)=cos(x) and have
e0⋅∑n=1∞Cne−(π⋅n)2⋅0sin(π⋅n⋅x)=∑n=1∞Cnsin(π⋅n⋅x)=cos(x)
This is Furier series problem which has solution
Cn=2πnπ2n2cos(πn)⋅cos(1)−1
Thus
u(x,t)= 2πet⋅∑n=1∞π2n2cos(πn)⋅cos(1)−1e−(π⋅n)2⋅tsin(π⋅n⋅x)
Comments