Solve the B.V.P.
π’π‘ = π’π₯π₯ + π’; { π’(π₯, 0) = cos π₯ 0 < π₯ < 1 π’(0,π‘) = 0, π’(1,π‘) = 0Β
We use method of separating variables.
u(x.t)=X(x)"\\cdot" T(t);
"T'(t)\\cdot X(x)=T(t)\\cdot X''(x)+T(t)\\cdot X(x)"
Divide both parts by "T(t)\\cdot X(x)"
"\\frac{T'(t)}{T(t)}-1=\\frac{X''(x)}{X(x)}"
Left part depend on t only but right part on x, it possible if both parts are equal to some constant "\\lambda"
"\\frac{T'(t)}{T(t)}-1=\\frac{X''(x)}{X(x)}=\\lambda"
"\\begin{cases}\n X''(x)-\\lambda\\cdot X(x)=0; \\\\\n X(0)=0,\\space X(1)=0.\n\\end{cases}"
This is standard bvp which has solution if "\\lambda<0" and
"X(x)=C_1\\cdot sin(\\sqrt{-\\lambda}\\cdot x)+C_2\\cdot cos(\\sqrt{-\\lambda}\\cdot x)" -general solution.
Using boundary conditions we have:
"X(0)=C_2\\cdot cos(0)=C_2=0\\rarr X(x)=C_1\\cdot sin(\\sqrt{-\\lambda}\\cdot x)"
"X(1)=C_1\\cdot sin(\\sqrt{-\\lambda})=0;\n\\sqrt{-\\lambda}=\\pi\\cdot n,n=1,2,..."
"\\lambda=-(\\pi\\cdot n)^2;"
Now we have set of solutions for n=1,2,...
"X_n(x)=C_n\\cdot sin(\\pi\\cdot n\\cdot x),n=1,2,..."
Further we shoulf find "T_n(t)" from an equation:
"\\frac{T'(t)}{T(t)}-1=-(\\pi\\cdot n)^2;"
"\\left(ln(T(t)) \\right)'=1-(\\pi\\cdot n)^2"
"ln(T(t))=\\left( 1-(\\pi\\cdot n)^2 \\right)\\cdot t+C"
The const C may be omitted because we have const Cn in Xn
Thus "T_n(t)=e^{\\left( 1-(\\pi\\cdot n)^2 \\right)\\cdot t}=e^t\\cdot e^{-(\\pi\\cdot n)^2\\cdot t}"
For u(x,t) we use series
"u(x,t)=\\sum_{n=1}^{\\infty} C_nT_n(t)X_n(x)=\\\\e^{t}\\cdot \\sum_{n=1}^{\\infty}C_ne^{-(\\pi\\cdot n)^2\\cdot t} sin(\\pi\\cdot n\\cdot x)"
Nou we take in account initial condition u(0,x)=cos(x) and have
"e^{0}\\cdot \\sum_{n=1}^{\\infty}C_ne^{-(\\pi\\cdot n)^2\\cdot 0} sin(\\pi\\cdot n\\cdot x)=\\\\ \\sum_{n=1}^{\\infty}C_n sin(\\pi\\cdot n\\cdot x)=cos(x)"
This is Furier series problem which has solution
"C_n=2\\pi n\\frac{cos(\\pi n)\\cdot cos(1)-1}{\\pi^2n^2}"
Thus
u(x,t)= "2\\pi e^{t}\\cdot \\sum_{n=1}^{\\infty}\\frac{cos(\\pi n)\\cdot cos(1)-1}{\\pi^2n^2}e^{-(\\pi\\cdot n)^2\\cdot t} sin(\\pi\\cdot n\\cdot x)"
Comments
Leave a comment