Question #257772

A capacitor circuit has been charged up to 12V and the instantaneous voltage is 𝒗 = 𝟏𝟐 (𝟏 − 𝒆 − 𝒕 𝜏)

The tasks are to: 

a) Draw a graph of voltage against time for 𝑣 = 12𝑉 and 𝜏 = 2𝑠, between 𝑡 = 0𝑠 and 𝑡 = 10𝑠.

b) Calculate the gradient at 𝑡 = 2𝑠 and 𝑡 = 4𝑠

c) Differentiate 𝒗 = 𝟏𝟐 (𝟏 − 𝒆 − 𝒕 𝜏) and calculate the value of 𝑑𝑣 𝑑𝑡 at 𝑡 = 2𝑠 and 𝑡 = 4𝑠.

d) Compare your answers for part b and part c. 

e) Calculate the second derivative of the instantaneous voltage ( 𝑑^2𝑣/𝑑𝑡^2 ). 


1
Expert's answer
2022-02-22T13:52:21-0500

Given: The equation for instantaneous voltage is

V=12(1et/τ)V=12(1-e^{-t/\tau})

a)


V=12(1et/2),t[0,10]V=12(1-e^{-t/2}), t\in [0, 10]


b)

gradt=2s12(1e(2+Δt/2)12(1e2/2)Δtgrad|_{t=2s}\approx\dfrac{12(1-e^{-(2+\Delta t/2})-12(1-e^{-2/2})}{\Delta t}

12e1(1eΔt/2)Δt6/e2.2073 V/s\approx\dfrac{12e^{-1}(1-e^{-\Delta t/2})}{\Delta t}\approx6/e\approx2.2073\ V/s

gradt=4s12(1e(4+Δt/2)12(1e4/2)Δtgrad|_{t=4s}\approx\dfrac{12(1-e^{-(4+\Delta t/2})-12(1-e^{-4/2})}{\Delta t}

12e2(1eΔt/2)Δt6/e20.8120 V/s\approx\dfrac{12e^{-2}(1-e^{-\Delta t/2})}{\Delta t}\approx6/e^2\approx0.8120\ V/s

c) 

V(t)=12(1/2)(et/2)=6et/2V'(t)=12(-1/2)(-e^{-t/2})=6e^{-t/2}


 

V(2)=6/e2.2073 V/sV'(2)=6/e\approx2.2073\ V/s

V(4)=6/e20.8120 V/sV'(4)=6/e^2\approx0.8120\ V/s

d) The result is the same.


e)


V(t)=3et/2V''(t)=-3e^{-t/2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS