y=4−x28
1. 4−x2=0=>x=±2
Domain:
(−∞;−2)∪(−2,2)∪(2,∞)
2. y− intersection:
x=0,y=4−(0)28=2
Point (0,2)
x− intersection(s):
y=0,4−x28=0, No solution
There are no x -intersections.
3. y(−x)=4−(−x)28=4−x28=y(x)
The function y=4−x28 is even on its domain. The garph is symmetric with respect to y -axis.
4.
x→−2−lim4−x28=−∞
x→−2+lim4−x28=∞
x→2−lim4−x28=∞
x→2+lim4−x28=−∞ Vertical asymptotes: x=−2,x=2.
x→−∞lim4−x28=0
x→∞lim4−x28=0 Horizontal asymptote: y=0.
5.
y′=(4−x28)′=(4−x2)216x Find the critical number(s):
y′=0=>(4−x2)216x=0=>x=0,x=±2 If x<−2,y′<0,y decreases.
If −2<x<0,y′<0,y decreases.
If 0<x<2,y′>0,y increases.
If x>2,y′>0,y increases.
y(0)=4−(0)28=2 The function y has a local minimum with value of 2 at x=0.
6.
y′′=((4−x2)216x)′=(4−x2)416((4−x2)2−2x(4−x2)(−2x))
=(4−x2)416((4−x2)2−2x(4−x2)(−2x))
=(4−x2)316(4−x2+4x2)=(4−x2)316(4+3x2)
If x<−2,y′<0,y is concave down.
If −2<x<2,y′′>0,y is concave up.
If x>2,y′′<0,y is concave down.
7. Sketch the graph.
Comments
Leave a comment