Answer to Question #257667 in Calculus for Pankaj

Question #257667
Trace the curve y= 8/4-x^2 , and state all the properties you use to trace it.
1
Expert's answer
2021-10-28T11:07:13-0400
y=84x2y=\dfrac{8}{4-x^2}


1. 4x20=>x±24-x^2\not=0=>x\not=\pm2

Domain: 

(;2)(2,2)(2,)(-\infin;-2)\cup(-2,2)\cup(2, \infin)


2. yy- intersection:

x=0,y=84(0)2=2x=0, y=\dfrac{8}{4-(0)^2}=2

Point (0,2)(0, 2)

xx- intersection(s):

y=0,84x2=0,y=0, \dfrac{8}{4-x^2}=0, No solution

There are no xx -intersections.


3. y(x)=84(x)2=84x2=y(x)y(-x)=\dfrac{8}{4-(-x)^2}=\dfrac{8}{4-x^2}=y(x)

The function y=84x2y=\dfrac{8}{4-x^2} is even on its domain. The garph is symmetric with respect to yy -axis.


4.


limx284x2=\lim\limits_{x\to -2^-}\dfrac{8}{4-x^2}=-\infin

limx2+84x2=\lim\limits_{x\to -2^+}\dfrac{8}{4-x^2}=\infin

limx284x2=\lim\limits_{x\to 2^-}\dfrac{8}{4-x^2}=\infin

limx2+84x2=\lim\limits_{x\to 2^+}\dfrac{8}{4-x^2}=-\infin

Vertical asymptotes: x=2,x=2.x=-2, x=2.



limx84x2=0\lim\limits_{x\to -\infin}\dfrac{8}{4-x^2}=0

limx84x2=0\lim\limits_{x\to \infin}\dfrac{8}{4-x^2}=0

Horizontal asymptote: y=0.y=0.


5.

y=(84x2)=16x(4x2)2y'=(\dfrac{8}{4-x^2})'=\dfrac{16x}{(4-x^2)^2}

Find the critical number(s):


y=0=>16x(4x2)2=0=>x=0,x±2y'=0=>\dfrac{16x}{(4-x^2)^2}=0=>x=0, x\not=\pm2

If x<2,y<0,yx<-2, y'<0, y decreases.

If 2<x<0,y<0,y-2<x<0, y'<0, y decreases.

If 0<x<2,y>0,y0<x<2, y'>0, y increases.

If x>2,y>0,yx>2, y'>0, y increases.


y(0)=84(0)2=2y(0)=\dfrac{8}{4-(0)^2}=2

The function yy has a local minimum with value of 22 at x=0.x=0.


6.

y=(16x(4x2)2)=16((4x2)22x(4x2)(2x))(4x2)4y''=(\dfrac{16x}{(4-x^2)^2})'=\dfrac{16((4-x^2)^2-2x(4-x^2)(-2x))}{(4-x^2)^4}

=16((4x2)22x(4x2)(2x))(4x2)4=\dfrac{16((4-x^2)^2-2x(4-x^2)(-2x))}{(4-x^2)^4}

=16(4x2+4x2)(4x2)3=16(4+3x2)(4x2)3=\dfrac{16(4-x^2+4x^2)}{(4-x^2)^3}=\dfrac{16(4+3x^2)}{(4-x^2)^3}


If x<2,y<0,yx<-2, y'<0, y is concave down.

If 2<x<2,y>0,y-2<x<2, y''>0, y is concave up.

If x>2,y<0,yx>2, y''<0, y is concave down.


7. Sketch the graph.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment