1. "4-x^2\\not=0=>x\\not=\\pm2"
Domain:Â
"(-\\infin;-2)\\cup(-2,2)\\cup(2, \\infin)"2. "y-" intersection:
"x=0, y=\\dfrac{8}{4-(0)^2}=2"
Point "(0, 2)"
"x-" intersection(s):
"y=0, \\dfrac{8}{4-x^2}=0," No solution
There are no "x" -intersections.
3. "y(-x)=\\dfrac{8}{4-(-x)^2}=\\dfrac{8}{4-x^2}=y(x)"
The function "y=\\dfrac{8}{4-x^2}" is even on its domain. The garph is symmetric with respect to "y" -axis.
4.
"\\lim\\limits_{x\\to -2^+}\\dfrac{8}{4-x^2}=\\infin"
"\\lim\\limits_{x\\to 2^-}\\dfrac{8}{4-x^2}=\\infin"
"\\lim\\limits_{x\\to 2^+}\\dfrac{8}{4-x^2}=-\\infin"
Vertical asymptotes: "x=-2, x=2."
"\\lim\\limits_{x\\to \\infin}\\dfrac{8}{4-x^2}=0"
Horizontal asymptote: "y=0."
5.
"y'=(\\dfrac{8}{4-x^2})'=\\dfrac{16x}{(4-x^2)^2}"Find the critical number(s):
If "x<-2, y'<0, y" decreases.
If "-2<x<0, y'<0, y" decreases.
If "0<x<2, y'>0, y" increases.
If "x>2, y'>0, y" increases.
The function "y" has a local minimum with value of "2" at "x=0."
6.
"y''=(\\dfrac{16x}{(4-x^2)^2})'=\\dfrac{16((4-x^2)^2-2x(4-x^2)(-2x))}{(4-x^2)^4}""=\\dfrac{16((4-x^2)^2-2x(4-x^2)(-2x))}{(4-x^2)^4}"
"=\\dfrac{16(4-x^2+4x^2)}{(4-x^2)^3}=\\dfrac{16(4+3x^2)}{(4-x^2)^3}"
If "x<-2, y'<0, y" is concave down.
If "-2<x<2, y''>0, y" is concave up.
If "x>2, y''<0, y" is concave down.
7. Sketch the graph.
Comments
Leave a comment