f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x,y)+iv(x,y) f ( z ) = u ( x , y ) + i v ( x , y )
l o g z = l n r + i θ = l n ( u ( x , y ) ) 2 + ( v ( x , y ) ) 2 + i a r c t a n ( v ( x , y ) / u ( x , y ) ) logz=lnr+i\theta=ln\sqrt{(u(x,y))^2+(v(x,y))^2}+iarctan(v(x,y)/u(x,y)) l o g z = l n r + i θ = l n ( u ( x , y ) ) 2 + ( v ( x , y ) ) 2 + ia rc t an ( v ( x , y ) / u ( x , y ))
d d x l o g ∣ f ( z ) ∣ = 2 u u x + 2 v v x 2 ( ( u ( x , y ) ) 2 + ( v ( x , y ) ) 2 ) + i 1 1 + ( v / u ) 2 \frac{d}{dx}log|f(z)|=\frac{2uu_x+2vv_x}{2((u(x,y))^2+(v(x,y))^2)}+i\frac{1}{1+(v/u)^2} d x d l o g ∣ f ( z ) ∣ = 2 (( u ( x , y ) ) 2 + ( v ( x , y ) ) 2 ) 2 u u x + 2 v v x + i 1 + ( v / u ) 2 1
d d x l o g ∣ f ( z ) ∣ = f x / f \frac{d}{dx}log|f(z)|=f_x/f d x d l o g ∣ f ( z ) ∣ = f x / f
d 2 d x 2 l o g ∣ f ( z ) ∣ = f x x f − f x 2 f 2 \frac{d^2}{dx^2}log|f(z)|=\frac{f_{xx}f-f^2_x}{f^2} d x 2 d 2 l o g ∣ f ( z ) ∣ = f 2 f xx f − f x 2
d d y l o g ∣ f ( z ) ∣ = f y / f \frac{d}{dy}log|f(z)|=f_y/f d y d l o g ∣ f ( z ) ∣ = f y / f
d 2 d y 2 l o g ∣ f ( z ) ∣ = f y y f − f y 2 f 2 \frac{d^2}{dy^2}log|f(z)|=\frac{f_{yy}f-f^2_y}{f^2} d y 2 d 2 l o g ∣ f ( z ) ∣ = f 2 f yy f − f y 2
( d 2 d x 2 + d 2 d y 2 ) l o g ∣ f ( z ) ∣ = f x x f − f x 2 f 2 + f y y f − f y 2 f 2 (\frac{d^2}{dx^2}+\frac{d^2}{dy^2})log|f(z)|=\frac{f_{xx}f-f^2_x}{f^2}+\frac{f_{yy}f-f^2_y}{f^2} ( d x 2 d 2 + d y 2 d 2 ) l o g ∣ f ( z ) ∣ = f 2 f xx f − f x 2 + f 2 f yy f − f y 2
f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x,y)+iv(x,y) f ( z ) = u ( x , y ) + i v ( x , y )
for analytic function:
u x = v y , u y = − v x u_x=v_y,u_y=-v_x u x = v y , u y = − v x
u x x = − u y y , v x x = − v y y u_{xx}=-u_{yy},v_{xx}=-v_{yy} u xx = − u yy , v xx = − v yy
then:
( d 2 d x 2 + d 2 d y 2 ) l o g ∣ f ( z ) ∣ = f ⋅ ( u x x + i v x x + u y y + i v y y ) − ( ( u x + i v x ) 2 + ( u y + i v y ) 2 ) ) ( u + i v ) 2 (\frac{d^2}{dx^2}+\frac{d^2}{dy^2})log|f(z)|=\frac{f\cdot(u_{xx}+iv_{xx}+u_{yy}+iv_{yy})-((u_x+iv_x)^2+(u_y+iv_y)^2))}{(u+iv)^2} ( d x 2 d 2 + d y 2 d 2 ) l o g ∣ f ( z ) ∣ = ( u + i v ) 2 f ⋅ ( u xx + i v xx + u yy + i v yy ) − (( u x + i v x ) 2 + ( u y + i v y ) 2 ))
u x x + i v x x + u y y + i v y y = u x x − i v y y − u x x + i v y y = 0 u_{xx}+iv_{xx}+u_{yy}+iv_{yy}=u_{xx}-iv_{yy}-u_{xx}+iv_{yy}=0 u xx + i v xx + u yy + i v yy = u xx − i v yy − u xx + i v yy = 0
( u x + i v x ) 2 + ( u y + i v y ) 2 = ( u x ) 2 + 2 i u x v x − ( v x ) 2 + ( u y ) 2 + 2 i u y v y − ( v y ) 2 = (u_x+iv_x)^2+(u_y+iv_y)^2=(u_x)^2+2iu_xv_x-(v_x)^2+(u_y)^2+2iu_yv_y-(v_y)^2= ( u x + i v x ) 2 + ( u y + i v y ) 2 = ( u x ) 2 + 2 i u x v x − ( v x ) 2 + ( u y ) 2 + 2 i u y v y − ( v y ) 2 =
= ( v y ) 2 − 2 i v y u y − ( u y ) 2 + ( u y ) 2 + 2 i v y u y − ( v y ) 2 = 0 =(v_y)^2-2iv_yu_y-(u_y)^2+(u_y)^2+2iv_yu_y-(v_y)^2=0 = ( v y ) 2 − 2 i v y u y − ( u y ) 2 + ( u y ) 2 + 2 i v y u y − ( v y ) 2 = 0
So,
( d 2 d x 2 + d 2 d y 2 ) l o g ∣ f ( z ) ∣ = 0 (\frac{d^2}{dx^2}+\frac{d^2}{dy^2})log|f(z)|=0 ( d x 2 d 2 + d y 2 d 2 ) l o g ∣ f ( z ) ∣ = 0
Comments