Answer to Question #257570 in Calculus for shyla

Question #257570

Use an appropriate technique to find the derivative of the following functions:

a. "[\nx\ny^3\/\n\n1\n+\nsec\n(\ny\n)\n]" = exy

b. "(\u221a(\n3\nx\n^2\n+\n4)\/\n(\nx\n^2\n+\n1)^(1\/3^))(\u03c0^X)"




1
Expert's answer
2021-10-29T03:01:16-0400

Solution:

a.

"\\dfrac{xy^3}{1+\\sec y} = e^{xy}"

On differentiating both sides w.r.t "x",

"\\dfrac{(1+\\sec y)(xy^3)'-(xy^3)(1+\\sec y)'}{(1+\\sec y)^2} = e^{xy}(xy)'"

"\\Rightarrow \\dfrac{(1+\\sec y)(y^3+3xy^2y')-(xy^3)(\\sec y \\tan y)y'}{(1+\\sec y)^2} = e^{xy}(xy'+y)"

"\\Rightarrow \\dfrac{(y^3+y^3\\sec y+3xy^2y'+3xy^2y'\\sec y)-(xy^3y'\\sec y \\tan y)}{(1+\\sec y)^2} = xy'e^{xy}+ye^{xy}"

"\\Rightarrow y^3+y^3\\sec y+y'[3xy^2+3xy^2\\sec y-xy^3\\sec y \\tan y] = xy'e^{xy}(1+\\sec y)^2+ye^{xy}(1+\\sec y)^2"

"\\Rightarrow y'[3xy^2+3xy^2\\sec y-xy^3\\sec y \\tan y] - xy'e^{xy}(1+\\sec y)^2=ye^{xy}(1+\\sec y)^2-(y^3+y^3\\sec y)\n\\\\\\Rightarrow y'[3xy^2+3xy^2\\sec y-xy^3\\sec y \\tan y - xe^{xy}(1+\\sec y)^2]=ye^{xy}(1+\\sec y)^2-(y^3+y^3\\sec y)\n\\\\\\Rightarrow y'=\\dfrac{ye^{xy}(1+\\sec y)^2-(y^3+y^3\\sec y)}{3xy^2+3xy^2\\sec y-xy^3\\sec y \\tan y - xe^{xy}(1+\\sec y)^2}"

b.

Let "y=\\sqrt{\\dfrac{3x^2+4}{(x^2+1)^{1\/3}}}\\times\\pi^x"

Taking log to both sides,

"\\log y=\\log (\\sqrt{\\dfrac{3x^2+4}{(x^2+1)^{1\/3}}}\\times\\pi^x)\n\\\\\\Rightarrow \\log y=\\log (\\sqrt{\\dfrac{3x^2+4}{(x^2+1)^{1\/3}}})+\\log(\\pi^x)\n\\\\\\Rightarrow \\log y=\\dfrac12\\log {\\dfrac{3x^2+4}{(x^2+1)^{1\/3}}}+x\\log(\\pi)\n\\\\\\Rightarrow \\log y=\\dfrac12[\\log ({{3x^2+4})-\\log{(x^2+1)^{1\/3}}}]+x\\log(\\pi)"

"\\\\\\Rightarrow \\log y=\\dfrac12[\\log ({{3x^2+4})-\\dfrac13\\log{(x^2+1)}}]+x\\log(\\pi)\n\\\\\\Rightarrow \\log y=\\dfrac12\\log ({{3x^2+4})-\\dfrac16\\log{(x^2+1)}}+x\\log(\\pi)"

On differentiating both sides w.r.t "x",

"\\\\\\Rightarrow \\dfrac1y.y'=\\dfrac12.\\dfrac{1}{3x^2+4}.(6x)-\\dfrac16.\\dfrac1{(x^2+1)}.(2x)+1.\\log(\\pi)\n\\\\\\Rightarrow y'=y[\\dfrac{3x}{3x^2+4}-\\dfrac x{3(x^2+1)}+\\log(\\pi)]\n\\\\\\Rightarrow y'=\\sqrt{\\dfrac{3x^2+4}{(x^2+1)^{1\/3}}}\\times\\pi^x[\\dfrac{3x}{3x^2+4}-\\dfrac x{3(x^2+1)}+\\log(\\pi)]"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS