Answer to Question #257570 in Calculus for shyla

Question #257570

Use an appropriate technique to find the derivative of the following functions:

a. [xy3/1+sec(y)][ x y^3/ 1 + sec ( y ) ] = exy

b. ((3x2+4)/(x2+1)(1/3))(πX)(√( 3 x ^2 + 4)/ ( x ^2 + 1)^(1/3^))(π^X)




1
Expert's answer
2021-10-29T03:01:16-0400

Solution:

a.

xy31+secy=exy\dfrac{xy^3}{1+\sec y} = e^{xy}

On differentiating both sides w.r.t xx,

(1+secy)(xy3)(xy3)(1+secy)(1+secy)2=exy(xy)\dfrac{(1+\sec y)(xy^3)'-(xy^3)(1+\sec y)'}{(1+\sec y)^2} = e^{xy}(xy)'

(1+secy)(y3+3xy2y)(xy3)(secytany)y(1+secy)2=exy(xy+y)\Rightarrow \dfrac{(1+\sec y)(y^3+3xy^2y')-(xy^3)(\sec y \tan y)y'}{(1+\sec y)^2} = e^{xy}(xy'+y)

(y3+y3secy+3xy2y+3xy2ysecy)(xy3ysecytany)(1+secy)2=xyexy+yexy\Rightarrow \dfrac{(y^3+y^3\sec y+3xy^2y'+3xy^2y'\sec y)-(xy^3y'\sec y \tan y)}{(1+\sec y)^2} = xy'e^{xy}+ye^{xy}

y3+y3secy+y[3xy2+3xy2secyxy3secytany]=xyexy(1+secy)2+yexy(1+secy)2\Rightarrow y^3+y^3\sec y+y'[3xy^2+3xy^2\sec y-xy^3\sec y \tan y] = xy'e^{xy}(1+\sec y)^2+ye^{xy}(1+\sec y)^2

y[3xy2+3xy2secyxy3secytany]xyexy(1+secy)2=yexy(1+secy)2(y3+y3secy)y[3xy2+3xy2secyxy3secytanyxexy(1+secy)2]=yexy(1+secy)2(y3+y3secy)y=yexy(1+secy)2(y3+y3secy)3xy2+3xy2secyxy3secytanyxexy(1+secy)2\Rightarrow y'[3xy^2+3xy^2\sec y-xy^3\sec y \tan y] - xy'e^{xy}(1+\sec y)^2=ye^{xy}(1+\sec y)^2-(y^3+y^3\sec y) \\\Rightarrow y'[3xy^2+3xy^2\sec y-xy^3\sec y \tan y - xe^{xy}(1+\sec y)^2]=ye^{xy}(1+\sec y)^2-(y^3+y^3\sec y) \\\Rightarrow y'=\dfrac{ye^{xy}(1+\sec y)^2-(y^3+y^3\sec y)}{3xy^2+3xy^2\sec y-xy^3\sec y \tan y - xe^{xy}(1+\sec y)^2}

b.

Let y=3x2+4(x2+1)1/3×πxy=\sqrt{\dfrac{3x^2+4}{(x^2+1)^{1/3}}}\times\pi^x

Taking log to both sides,

logy=log(3x2+4(x2+1)1/3×πx)logy=log(3x2+4(x2+1)1/3)+log(πx)logy=12log3x2+4(x2+1)1/3+xlog(π)logy=12[log(3x2+4)log(x2+1)1/3]+xlog(π)\log y=\log (\sqrt{\dfrac{3x^2+4}{(x^2+1)^{1/3}}}\times\pi^x) \\\Rightarrow \log y=\log (\sqrt{\dfrac{3x^2+4}{(x^2+1)^{1/3}}})+\log(\pi^x) \\\Rightarrow \log y=\dfrac12\log {\dfrac{3x^2+4}{(x^2+1)^{1/3}}}+x\log(\pi) \\\Rightarrow \log y=\dfrac12[\log ({{3x^2+4})-\log{(x^2+1)^{1/3}}}]+x\log(\pi)

logy=12[log(3x2+4)13log(x2+1)]+xlog(π)logy=12log(3x2+4)16log(x2+1)+xlog(π)\\\Rightarrow \log y=\dfrac12[\log ({{3x^2+4})-\dfrac13\log{(x^2+1)}}]+x\log(\pi) \\\Rightarrow \log y=\dfrac12\log ({{3x^2+4})-\dfrac16\log{(x^2+1)}}+x\log(\pi)

On differentiating both sides w.r.t xx,

1y.y=12.13x2+4.(6x)16.1(x2+1).(2x)+1.log(π)y=y[3x3x2+4x3(x2+1)+log(π)]y=3x2+4(x2+1)1/3×πx[3x3x2+4x3(x2+1)+log(π)]\\\Rightarrow \dfrac1y.y'=\dfrac12.\dfrac{1}{3x^2+4}.(6x)-\dfrac16.\dfrac1{(x^2+1)}.(2x)+1.\log(\pi) \\\Rightarrow y'=y[\dfrac{3x}{3x^2+4}-\dfrac x{3(x^2+1)}+\log(\pi)] \\\Rightarrow y'=\sqrt{\dfrac{3x^2+4}{(x^2+1)^{1/3}}}\times\pi^x[\dfrac{3x}{3x^2+4}-\dfrac x{3(x^2+1)}+\log(\pi)]


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment