Use an appropriate technique to find the derivative of the following functions:
a. "[\nx\ny^3\/\n\n1\n+\nsec\n(\ny\n)\n]" = exy
b. "(\u221a(\n3\nx\n^2\n+\n4)\/\n(\nx\n^2\n+\n1)^(1\/3^))(\u03c0^X)"
Solution:
a.
"\\dfrac{xy^3}{1+\\sec y} = e^{xy}"
On differentiating both sides w.r.t "x",
"\\dfrac{(1+\\sec y)(xy^3)'-(xy^3)(1+\\sec y)'}{(1+\\sec y)^2} = e^{xy}(xy)'"
"\\Rightarrow \\dfrac{(1+\\sec y)(y^3+3xy^2y')-(xy^3)(\\sec y \\tan y)y'}{(1+\\sec y)^2} = e^{xy}(xy'+y)"
"\\Rightarrow \\dfrac{(y^3+y^3\\sec y+3xy^2y'+3xy^2y'\\sec y)-(xy^3y'\\sec y \\tan y)}{(1+\\sec y)^2} = xy'e^{xy}+ye^{xy}"
"\\Rightarrow y^3+y^3\\sec y+y'[3xy^2+3xy^2\\sec y-xy^3\\sec y \\tan y] = xy'e^{xy}(1+\\sec y)^2+ye^{xy}(1+\\sec y)^2"
"\\Rightarrow y'[3xy^2+3xy^2\\sec y-xy^3\\sec y \\tan y] - xy'e^{xy}(1+\\sec y)^2=ye^{xy}(1+\\sec y)^2-(y^3+y^3\\sec y)\n\\\\\\Rightarrow y'[3xy^2+3xy^2\\sec y-xy^3\\sec y \\tan y - xe^{xy}(1+\\sec y)^2]=ye^{xy}(1+\\sec y)^2-(y^3+y^3\\sec y)\n\\\\\\Rightarrow y'=\\dfrac{ye^{xy}(1+\\sec y)^2-(y^3+y^3\\sec y)}{3xy^2+3xy^2\\sec y-xy^3\\sec y \\tan y - xe^{xy}(1+\\sec y)^2}"
b.
Let "y=\\sqrt{\\dfrac{3x^2+4}{(x^2+1)^{1\/3}}}\\times\\pi^x"
Taking log to both sides,
"\\log y=\\log (\\sqrt{\\dfrac{3x^2+4}{(x^2+1)^{1\/3}}}\\times\\pi^x)\n\\\\\\Rightarrow \\log y=\\log (\\sqrt{\\dfrac{3x^2+4}{(x^2+1)^{1\/3}}})+\\log(\\pi^x)\n\\\\\\Rightarrow \\log y=\\dfrac12\\log {\\dfrac{3x^2+4}{(x^2+1)^{1\/3}}}+x\\log(\\pi)\n\\\\\\Rightarrow \\log y=\\dfrac12[\\log ({{3x^2+4})-\\log{(x^2+1)^{1\/3}}}]+x\\log(\\pi)"
"\\\\\\Rightarrow \\log y=\\dfrac12[\\log ({{3x^2+4})-\\dfrac13\\log{(x^2+1)}}]+x\\log(\\pi)\n\\\\\\Rightarrow \\log y=\\dfrac12\\log ({{3x^2+4})-\\dfrac16\\log{(x^2+1)}}+x\\log(\\pi)"
On differentiating both sides w.r.t "x",
"\\\\\\Rightarrow \\dfrac1y.y'=\\dfrac12.\\dfrac{1}{3x^2+4}.(6x)-\\dfrac16.\\dfrac1{(x^2+1)}.(2x)+1.\\log(\\pi)\n\\\\\\Rightarrow y'=y[\\dfrac{3x}{3x^2+4}-\\dfrac x{3(x^2+1)}+\\log(\\pi)]\n\\\\\\Rightarrow y'=\\sqrt{\\dfrac{3x^2+4}{(x^2+1)^{1\/3}}}\\times\\pi^x[\\dfrac{3x}{3x^2+4}-\\dfrac x{3(x^2+1)}+\\log(\\pi)]"
Comments
Leave a comment