Solution:
a.
1+secyxy3=exy
On differentiating both sides w.r.t x,
(1+secy)2(1+secy)(xy3)′−(xy3)(1+secy)′=exy(xy)′
⇒(1+secy)2(1+secy)(y3+3xy2y′)−(xy3)(secytany)y′=exy(xy′+y)
⇒(1+secy)2(y3+y3secy+3xy2y′+3xy2y′secy)−(xy3y′secytany)=xy′exy+yexy
⇒y3+y3secy+y′[3xy2+3xy2secy−xy3secytany]=xy′exy(1+secy)2+yexy(1+secy)2
⇒y′[3xy2+3xy2secy−xy3secytany]−xy′exy(1+secy)2=yexy(1+secy)2−(y3+y3secy)⇒y′[3xy2+3xy2secy−xy3secytany−xexy(1+secy)2]=yexy(1+secy)2−(y3+y3secy)⇒y′=3xy2+3xy2secy−xy3secytany−xexy(1+secy)2yexy(1+secy)2−(y3+y3secy)
b.
Let y=(x2+1)1/33x2+4×πx
Taking log to both sides,
logy=log((x2+1)1/33x2+4×πx)⇒logy=log((x2+1)1/33x2+4)+log(πx)⇒logy=21log(x2+1)1/33x2+4+xlog(π)⇒logy=21[log(3x2+4)−log(x2+1)1/3]+xlog(π)
⇒logy=21[log(3x2+4)−31log(x2+1)]+xlog(π)⇒logy=21log(3x2+4)−61log(x2+1)+xlog(π)
On differentiating both sides w.r.t x,
⇒y1.y′=21.3x2+41.(6x)−61.(x2+1)1.(2x)+1.log(π)⇒y′=y[3x2+43x−3(x2+1)x+log(π)]⇒y′=(x2+1)1/33x2+4×πx[3x2+43x−3(x2+1)x+log(π)]
Comments
Leave a comment