use chain rule to find dy/dx for given value of x
y=(u-1/u+1)^1/2, u=βx-1, for x=34/9
"y'_x=\\dfrac{1}{2}(\\dfrac{u-1}{u+1})^{-1\/2}(\\dfrac{u+1-(u-1)}{(u+1)^2})u'_x"
"=(\\dfrac{u+1}{u-1})^{1\/2}(\\dfrac{1}{(u+1)^2})(\\dfrac{1}{2\\sqrt{x-1}})"
"=(\\dfrac{\\sqrt{x-1}+1}{\\sqrt{x-1}-1})^{1\/2}(\\dfrac{1}{(\\sqrt{x-1}+1)^2})(\\dfrac{1}{2\\sqrt{x-1}})"
"y'(\\dfrac{34}{9})=\\bigg(\\dfrac{5\/3+1}{5\/3-1}\\bigg)^{1\/2}\\big(\\dfrac{1}{(5\/3+1)^2}\\big)(\\dfrac{1}{2(5\/3})"
"=\\dfrac{27}{320}"
Comments
Leave a comment