Solution:
"a_1=192,n=6,r=1.5"
for Arithmetic Progression (A.P);
"d=1.5,n=21"
Also, sum of all terms in G.P = sum of all terms in A.P
Or "S_{n,G.P}=S_{n,A.P}"
"\\Rightarrow \\dfrac{a_1(r^n-1}{r-1}=\\dfrac{n}{2}[2a_1+(n-1)d]\n\\\\ \\Rightarrow \\dfrac{192(1.5^6-1}{1.5-1}=\\dfrac{21}{2}[2a_1+(21-1)1.5]\n\\\\ \\Rightarrow 3990=\\dfrac{21}{2}[2a_1+30]\n\\\\ \\Rightarrow 2a_1+30=380\n\\\\ \\Rightarrow 2a_1=350\n\\\\ \\Rightarrow a=175"
Last term of A.P"=a_n=a+(n-1)d"
"=175+(21-1)1.5\n\\\\=175+30\n\\\\=205"
Comments
Leave a comment