find the area outside circle r = 1/2 and inside circle r = cosθ
The two curves intersect where "1\/2=\\cos \\theta." So "\\theta=-\\pi\/3" or "\\pi\/3."
The area we want is then
"=\\dfrac{1}{8}\\displaystyle\\int_{-\\pi\/3}^{\\pi\/3}(1+2\\cos(2\\theta))d\\theta"
"=\\dfrac{1}{8}[\\theta+\\sin(2\\theta)]\\begin{matrix}\n \\pi\/3 \\\\\n -\\pi\/3\n\\end{matrix}"
"=\\dfrac{1}{8}(\\dfrac{\\pi}{3}+\\sin(\\dfrac{2\\pi}{3})-(-\\dfrac{\\pi}{3})-\\sin(\\dfrac{-2\\pi}{3}))"
"=(\\dfrac{\\pi}{12}+\\dfrac{\\sqrt{3}}{8})({units}^2)"
The area outside circle "r = 1\/2" and inside circle "r = \\cos\u03b8" is "(\\dfrac{\\pi}{12}+\\dfrac{\\sqrt{3}}{8})" square units.
Comments
Leave a comment