The two curves intersect where 1 / 2 = cos θ . 1/2=\cos \theta. 1/2 = cos θ . So θ = − π / 3 \theta=-\pi/3 θ = − π /3 or π / 3. \pi/3. π /3.
The area we want is then
1 2 ∫ − π / 3 π / 3 ( ( cos θ ) 2 − ( 1 / 2 ) 2 ) d θ \dfrac{1}{2}\displaystyle\int_{-\pi/3}^{\pi/3}((\cos \theta)^2-(1/2)^2)d\theta 2 1 ∫ − π /3 π /3 (( cos θ ) 2 − ( 1/2 ) 2 ) d θ
= 1 8 ∫ − π / 3 π / 3 ( 2 ( 1 + cos ( 2 θ ) ) − 1 ) d θ =\dfrac{1}{8}\displaystyle\int_{-\pi/3}^{\pi/3}(2(1+\cos(2\theta))-1)d\theta = 8 1 ∫ − π /3 π /3 ( 2 ( 1 + cos ( 2 θ )) − 1 ) d θ
= 1 8 ∫ − π / 3 π / 3 ( 1 + 2 cos ( 2 θ ) ) d θ =\dfrac{1}{8}\displaystyle\int_{-\pi/3}^{\pi/3}(1+2\cos(2\theta))d\theta = 8 1 ∫ − π /3 π /3 ( 1 + 2 cos ( 2 θ )) d θ
= 1 8 [ θ + sin ( 2 θ ) ] π / 3 − π / 3 =\dfrac{1}{8}[\theta+\sin(2\theta)]\begin{matrix}
\pi/3 \\
-\pi/3
\end{matrix} = 8 1 [ θ + sin ( 2 θ )] π /3 − π /3
= 1 8 ( π 3 + sin ( 2 π 3 ) − ( − π 3 ) − sin ( − 2 π 3 ) ) =\dfrac{1}{8}(\dfrac{\pi}{3}+\sin(\dfrac{2\pi}{3})-(-\dfrac{\pi}{3})-\sin(\dfrac{-2\pi}{3})) = 8 1 ( 3 π + sin ( 3 2 π ) − ( − 3 π ) − sin ( 3 − 2 π ))
= ( π 12 + 3 8 ) ( u n i t s 2 ) =(\dfrac{\pi}{12}+\dfrac{\sqrt{3}}{8})({units}^2) = ( 12 π + 8 3 ) ( u ni t s 2 ) The area outside circle r = 1 / 2 r = 1/2 r = 1/2 and inside circle r = cos θ r = \cosθ r = cos θ is ( π 12 + 3 8 ) (\dfrac{\pi}{12}+\dfrac{\sqrt{3}}{8}) ( 12 π + 8 3 ) square units.
Comments