From given data;
The heat equation in two space dimensions may be expressed in polar coordinates as
ut=α2[urr+r1ur+r21uθθ]
Assuming that ,u(r,θ,t)=R(r)Θ(θ)T(t)
Now we have to find ordinary differential equations satisfied by R,Θ,T
Let us take
u(r,θ,t)=R(r)Θ(θ)T(t)
ur=R′(r)Θ(θ)T(t)
urr=R′′(r)Θ(θ)T(t)
uθ=R(r)Θ′(θ)T(t)
uθθ=R(r)Θ′′(θ)T(t)
ut=α2[urr+r1ur+r21uθθ]
ut=α2[R′′(r)Θ(θ)T(t)+r1R′(r)Θ(θ)T(t)+r21R(r)Θ′′(θ)T(t)]
=R′′(r)Θ(θ)T′(t)
ut=R′′(r)Θ(θ)T′(t)
Comments
Leave a comment