∂t∂u=1.71∂x2∂2u...(1)u(x,0)=sin(2πx)+3sin(25πx),0<x<2
By using variable separation method
&⇒u(x,t)=X(x)⋅T(t)...(2)∂x2∂2u=X′⋅T,∂t∂u=XT′∴Eqn(1) becomes, XT′=1.71X′′T1.71.TT′=XX′′=K1.71TT′=K,XX′′=K( say )
Solving, 1.71.TT′=k⇒T′=1.71KT⇒T′−1.71KT=0 Put T′=m&D(T)=0⇒m−1.71k=0. ⇒m=1.71k∴T(t)=Ae1.71kt...(3) & solving XX′′=k⇒X′′−kX=0 Put X′=m. ⇒m2−k=0⇒m2=k⇒m=±k∴X(x)=Bekx+Ce−kx...(4)
Put eqn (3) \& (4) in eqn (2), we get
u(x,t)=A⋅e1,71kt⋅(Bekx+ce−kx)...(5)&By condition. u(x,0)=sin(2πx)+3sin(25πx)0<x<z i.e. x=1⇒u(x,0)=sin(2π)+3sin(25π)u(x,0)=1+3(1)u(x,0)=1+3=4u(x,0)=4
∴u(x,0)⇒A(1)(Bekx+Ce−kx)⇒A=Ae1.71k(0)(Bekx+ce−kx)=4=4=Bekx+ce−kx4
Eqn (5) becomes
u(x,t)=Bekx+cekx4e1.71kt⋅(Bekx+ce−kx)
u(x,t)=4e1.71kt
Comments