Find a solution u(x,t) to the problem ๐๐ข ๐๐ก = 1.71 ๐^2๐ข/๐๐ฅ^2 , ๐ข(๐ฅ, 0) = ๐ ๐๐ ( ๐๐ฅ/2 ) + 3 ๐ ๐๐ ( 5๐๐ฅ/2 ) , 0 < ๐ฅ < 2
"\\begin{aligned}\n&\\frac{\\partial u}{\\partial t}=1.71 \\frac{\\partial^{2} u}{\\partial x^{2}} ...(1) \\\\\n& u(x, 0)=\\sin \\left(\\frac{\\pi x}{2}\\right)+3 \\sin \\left(\\frac{5 \\pi x}{2}\\right) ,0<x<2\n\\end{aligned}"
By using variable separation method
"\\begin{aligned}\n& u(x, t)=X(x) \\cdot T(t)...(2) \\\\\n\\& & \\frac{\\partial^{2} u}{\\partial x^{2}}=X^{\\prime } \\cdot T, \\quad \\frac{\\partial u}{\\partial t}=X T^{\\prime} \\\\\n& \\therefore E q^{n}(1) \\text { becomes, } \\\\\n& X T^{\\prime}=1.71X''T \\\\\n& \\frac{T^{\\prime}}{1.71 . T}=\\frac{X^{\\prime \\prime}}{X}=K \\\\\n\\Rightarrow & \\frac{T^{\\prime}}{1.71 T}=K , \\frac{X^{\\prime \\prime}}{X}=K \\quad(\\text { say })\n\\end{aligned}"
"\\begin{aligned}\n&\\text { Solving, } \\frac{T^{\\prime}}{1.71 . T}=k\\\\\n&\\Rightarrow T^{\\prime}=1.71 \\mathrm{KT}\\\\\n&\\Rightarrow T^{\\prime}-1.71 \\mathrm{KT}=0\\\\\n&\\text { Put } T^{\\prime}=m \\quad \\& \\quad D(T)=0\\\\\n&\\Rightarrow m-1.71 k=0 \\text {. }\\\\\n&\\Rightarrow m=1.71 \\mathrm{k}\\\\\n&\\therefore T(t)=A e^{1.71 k t}...(3)\\\\\n&\\text { \\& solving } \\frac{X^{\\prime \\prime}}{X}=k\\\\\n&\\Rightarrow \\quad X^{\\prime \\prime}-k X=0\\\\\n&\\text { Put } X^{\\prime}=m \\text {. }\\\\\n&\\Rightarrow m^{2}-k=0\\\\\n&\\Rightarrow m^{2}=k\\\\\n&\\Rightarrow m=\\pm k\\\\\n&\\therefore X(x)=B e^{k x}+C e^{-k x}...(4)\n\\end{aligned}"
Put eqn (3) \& (4) in eqn (2), we get
"\\begin{aligned}\n&u(x, t)=A \\cdot e^{1,71 k t} \\cdot\\left(B e^{k x}+c e^{-k x}\\right)...(5) \\\\\n&\\& B y \\text { condition. } \\\\\n&u(x, 0)=\\sin \\left(\\frac{\\pi x}{2}\\right)+3 \\sin \\left(\\frac{5 \\pi x}{2}\\right) \\quad 0<x<z \\\\\n&\\quad \\text { i.e. } \\quad x=1 \\\\\n&\\Rightarrow u(x, 0)=\\sin \\left(\\frac{\\pi}{2}\\right)+3 \\sin \\left(\\frac{5 \\pi}{2}\\right) \\\\\n&u(x, 0)=1+3(1) \\\\\n&u(x, 0)=1+3=4 \\\\\n&u(x, 0)=4\n\\end{aligned}"
"\\begin{aligned}\n\\therefore u(x, 0) &=A e^{1.71 k(0)}\\left(B e^{k x}+c e^{-k x}\\right)=4 \\\\\n\\Rightarrow A(1)\\left(B e^{k x}+C e^{-k x}\\right) &=4 \\\\\n\\Rightarrow A &=\\frac{4}{B e^{k x}+c e^{-k x}}\n\\end{aligned}"
Eqn (5) becomes
ย
"u(x, t)=\\frac{4 e^{1.71 k t}}{B e^{k x}+c e^{k x}} \\cdot\\left(B e^{k x}+c e^{-k x}\\right)"
ย "u(x, t)=4 e^{1.71 k t}"
ย
Comments
Leave a comment