Answer to Question #257878 in Calculus for prezi

Question #257878

The ends π‘₯ = 0 and π‘₯ = 10 of a thin aluminum bar (𝛼 2 = 0.86) are kept at 0 π‘œπΆ, while the surface of the bar is insulated. Find an expression for the temperature 𝑒(π‘₯,𝑑) in the bar if initially


𝑒(π‘₯, 0) = { 10π‘₯ 0 < π‘₯ < 5 10(10 βˆ’ 10π‘₯) 5 ≀ π‘₯ < 10Β 


1
Expert's answer
2021-10-29T03:01:42-0400

Solution;

x=0 ; x=10

The heat equation is;

"\\frac{\\delta u}{\\delta t}=\\alpha^2\\frac{\\delta^2u}{\\delta x^2}......(1)"

The general solution of the heat equation is in the form;

"u(x,t)=(Acos\\lambda x+Bsin\\lambda x)e^{-\\delta ^2\\lambda^2t}.......(2)"

The boundary conditions are;

"(i)u(0,t)=0" ; "t\\geq0"

"(ii)u(10,t)=0" ; "t>0"

"(iii)u(x,0)=f(x)=10x" ; "0<x<5" ;"10(10-10x);5\\leq x<10"

Applying condition (i) in (2),we have;

"0=Ae^{-0.86\\lambda^2t}"

Hence;

"A=0"

Equation (2) reduces to ;

"u(x,t)=Bsin\\lambda xe^{-0.86\\lambda^2t}...(3)"

Apply condition (ii) in (3);

"0=Bsin10\\lambda e^{-0.86\\lambda^2t}"

"i.e" "10\\lambda=n\u03c0" ;"\\lambda=\\frac{n\u03c0}{10}" (n is an integer)

Substituting in (3);

"u(x,t)=Bsin\\frac{n\u03c0x}{10}e^{-0.86\\frac{n^2\u03c0^2}{100}t}"

The most general solution is;

"u(x,t)=\\displaystyle\\sum_{n=1}^{\\infin}B_nsin\\frac{n\u03c0x}{10}e^{\\frac{-0.86n^2\u03c0^2}{100}t}" .......(4)

Apply condition (iii) in (4);

"u(x,0)=\\displaystyle\\sum_{n=1}^{\\infin}B_nsin\\frac{n\u03c0x}{10}=f(x)"

The LHS series is the half range Fourier sine series of the RHS functions.

Therefore;

"B_n=\\frac{2}{10}[\\int_0^5f(x)sin\\frac{n\u03c0x}{10}dx+\\int_5^{10}f(x)sin\\frac{n\u03c0x}{10}dx]"

"B_n=\\frac{2}{10}[\\int_0^510xsin\\frac{n\u03c0x}{10}dx+\\int_5^{10}10(10-10x)sin\\frac{n\u03c0x}{10}dx]"

Integrate and simplify to obtain;

"B_n=\\frac{(90x-100)cos\\frac{n\u03c0x}{10}}{\u03c0n}-\\frac{900sin\\frac{n\u03c0x}{10}}{n^2\u03c0^2}"

Replace Bn in (3) ;

"u(x,t)=(\\frac{(90x-100)cos\\frac{n\u03c0x}{10}}{\u03c0n}-\\frac{900sin\\frac{n\u03c0x}{10}}{n^2\u03c0^2})e^{\\frac{-0.86n^2\u03c0^2t}{100}}"







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS