Question #257878

The ends đ‘Ĩ = 0 and đ‘Ĩ = 10 of a thin aluminum bar (đ›ŧ 2 = 0.86) are kept at 0 𝑜đļ, while the surface of the bar is insulated. Find an expression for the temperature đ‘ĸ(đ‘Ĩ,𝑡) in the bar if initially


đ‘ĸ(đ‘Ĩ, 0) = { 10đ‘Ĩ 0 < đ‘Ĩ < 5 10(10 − 10đ‘Ĩ) 5 ≤ đ‘Ĩ < 10 


1
Expert's answer
2021-10-29T03:01:42-0400

Solution;

x=0 ; x=10

The heat equation is;

δuδt=ι2δ2uδx2......(1)\frac{\delta u}{\delta t}=\alpha^2\frac{\delta^2u}{\delta x^2}......(1)

The general solution of the heat equation is in the form;

u(x,t)=(AcosÎģx+BsinÎģx)e−δ2Îģ2t.......(2)u(x,t)=(Acos\lambda x+Bsin\lambda x)e^{-\delta ^2\lambda^2t}.......(2)

The boundary conditions are;

(i)u(0,t)=0(i)u(0,t)=0 ; tâ‰Ĩ0t\geq0

(ii)u(10,t)=0(ii)u(10,t)=0 ; t>0t>0

(iii)u(x,0)=f(x)=10x(iii)u(x,0)=f(x)=10x ; 0<x<50<x<5 ;10(10−10x);5≤x<1010(10-10x);5\leq x<10

Applying condition (i) in (2),we have;

0=Ae−0.86Îģ2t0=Ae^{-0.86\lambda^2t}

Hence;

A=0A=0

Equation (2) reduces to ;

u(x,t)=BsinÎģxe−0.86Îģ2t...(3)u(x,t)=Bsin\lambda xe^{-0.86\lambda^2t}...(3)

Apply condition (ii) in (3);

0=Bsin10Îģe−0.86Îģ2t0=Bsin10\lambda e^{-0.86\lambda^2t}

i.ei.e 10Îģ=nĪ€10\lambda=nĪ€ ;Îģ=nĪ€10\lambda=\frac{nĪ€}{10} (n is an integer)

Substituting in (3);

u(x,t)=BsinnĪ€x10e−0.86n2Ī€2100tu(x,t)=Bsin\frac{nĪ€x}{10}e^{-0.86\frac{n^2Ī€^2}{100}t}

The most general solution is;

u(x,t)=∑n=1∞BnsinnĪ€x10e−0.86n2Ī€2100tu(x,t)=\displaystyle\sum_{n=1}^{\infin}B_nsin\frac{nĪ€x}{10}e^{\frac{-0.86n^2Ī€^2}{100}t} .......(4)

Apply condition (iii) in (4);

u(x,0)=∑n=1∞BnsinnĪ€x10=f(x)u(x,0)=\displaystyle\sum_{n=1}^{\infin}B_nsin\frac{nĪ€x}{10}=f(x)

The LHS series is the half range Fourier sine series of the RHS functions.

Therefore;

Bn=210[âˆĢ05f(x)sinnĪ€x10dx+âˆĢ510f(x)sinnĪ€x10dx]B_n=\frac{2}{10}[\int_0^5f(x)sin\frac{nĪ€x}{10}dx+\int_5^{10}f(x)sin\frac{nĪ€x}{10}dx]

Bn=210[âˆĢ0510xsinnĪ€x10dx+âˆĢ51010(10−10x)sinnĪ€x10dx]B_n=\frac{2}{10}[\int_0^510xsin\frac{nĪ€x}{10}dx+\int_5^{10}10(10-10x)sin\frac{nĪ€x}{10}dx]

Integrate and simplify to obtain;

Bn=(90x−100)cosnĪ€x10Ī€n−900sinnĪ€x10n2Ī€2B_n=\frac{(90x-100)cos\frac{nĪ€x}{10}}{Ī€n}-\frac{900sin\frac{nĪ€x}{10}}{n^2Ī€^2}

Replace Bn in (3) ;

u(x,t)=((90x−100)cosnĪ€x10Ī€n−900sinnĪ€x10n2Ī€2)e−0.86n2Ī€2t100u(x,t)=(\frac{(90x-100)cos\frac{nĪ€x}{10}}{Ī€n}-\frac{900sin\frac{nĪ€x}{10}}{n^2Ī€^2})e^{\frac{-0.86n^2Ī€^2t}{100}}







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS