The ends π₯ = 0 and π₯ = 10 of a thin aluminum bar (πΌ 2 = 0.86) are kept at 0 ππΆ, while the surface of the bar is insulated. Find an expression for the temperature π’(π₯,π‘) in the bar if initially
π’(π₯, 0) = { 10π₯ 0 < π₯ < 5 10(10 β 10π₯) 5 β€ π₯ < 10Β
Solution;
x=0 ; x=10
The heat equation is;
"\\frac{\\delta u}{\\delta t}=\\alpha^2\\frac{\\delta^2u}{\\delta x^2}......(1)"
The general solution of the heat equation is in the form;
"u(x,t)=(Acos\\lambda x+Bsin\\lambda x)e^{-\\delta ^2\\lambda^2t}.......(2)"
The boundary conditions are;
"(i)u(0,t)=0" ; "t\\geq0"
"(ii)u(10,t)=0" ; "t>0"
"(iii)u(x,0)=f(x)=10x" ; "0<x<5" ;"10(10-10x);5\\leq x<10"
Applying condition (i) in (2),we have;
"0=Ae^{-0.86\\lambda^2t}"
Hence;
"A=0"
Equation (2) reduces to ;
"u(x,t)=Bsin\\lambda xe^{-0.86\\lambda^2t}...(3)"
Apply condition (ii) in (3);
"0=Bsin10\\lambda e^{-0.86\\lambda^2t}"
"i.e" "10\\lambda=n\u03c0" ;"\\lambda=\\frac{n\u03c0}{10}" (n is an integer)
Substituting in (3);
"u(x,t)=Bsin\\frac{n\u03c0x}{10}e^{-0.86\\frac{n^2\u03c0^2}{100}t}"
The most general solution is;
"u(x,t)=\\displaystyle\\sum_{n=1}^{\\infin}B_nsin\\frac{n\u03c0x}{10}e^{\\frac{-0.86n^2\u03c0^2}{100}t}" .......(4)
Apply condition (iii) in (4);
"u(x,0)=\\displaystyle\\sum_{n=1}^{\\infin}B_nsin\\frac{n\u03c0x}{10}=f(x)"
The LHS series is the half range Fourier sine series of the RHS functions.
Therefore;
"B_n=\\frac{2}{10}[\\int_0^5f(x)sin\\frac{n\u03c0x}{10}dx+\\int_5^{10}f(x)sin\\frac{n\u03c0x}{10}dx]"
"B_n=\\frac{2}{10}[\\int_0^510xsin\\frac{n\u03c0x}{10}dx+\\int_5^{10}10(10-10x)sin\\frac{n\u03c0x}{10}dx]"
Integrate and simplify to obtain;
"B_n=\\frac{(90x-100)cos\\frac{n\u03c0x}{10}}{\u03c0n}-\\frac{900sin\\frac{n\u03c0x}{10}}{n^2\u03c0^2}"
Replace Bn in (3) ;
"u(x,t)=(\\frac{(90x-100)cos\\frac{n\u03c0x}{10}}{\u03c0n}-\\frac{900sin\\frac{n\u03c0x}{10}}{n^2\u03c0^2})e^{\\frac{-0.86n^2\u03c0^2t}{100}}"
Comments
Leave a comment