Solution;
x=0 ; x=10
The heat equation is;
δtδuâ=Îą2δx2δ2uâ......(1)
The general solution of the heat equation is in the form;
u(x,t)=(AcosÎģx+BsinÎģx)eâδ2Îģ2t.......(2)
The boundary conditions are;
(i)u(0,t)=0 ; tâĨ0
(ii)u(10,t)=0 ; t>0
(iii)u(x,0)=f(x)=10x ; 0<x<5 ;10(10â10x);5â¤x<10
Applying condition (i) in (2),we have;
0=Aeâ0.86Îģ2t
Hence;
A=0
Equation (2) reduces to ;
u(x,t)=BsinÎģxeâ0.86Îģ2t...(3)
Apply condition (ii) in (3);
0=Bsin10Îģeâ0.86Îģ2t
i.e 10Îģ=nĪ ;Îģ=10nĪâ (n is an integer)
Substituting in (3);
u(x,t)=Bsin10nĪxâeâ0.86100n2Ī2ât
The most general solution is;
u(x,t)=n=1âââBnâsin10nĪxâe100â0.86n2Ī2ât .......(4)
Apply condition (iii) in (4);
u(x,0)=n=1âââBnâsin10nĪxâ=f(x)
The LHS series is the half range Fourier sine series of the RHS functions.
Therefore;
Bnâ=102â[âĢ05âf(x)sin10nĪxâdx+âĢ510âf(x)sin10nĪxâdx]
Bnâ=102â[âĢ05â10xsin10nĪxâdx+âĢ510â10(10â10x)sin10nĪxâdx]
Integrate and simplify to obtain;
Bnâ=Īn(90xâ100)cos10nĪxââân2Ī2900sin10nĪxââ
Replace Bn in (3) ;
u(x,t)=(Īn(90xâ100)cos10nĪxââân2Ī2900sin10nĪxââ)e100â0.86n2Ī2tâ
Comments