Question #246050

a) Graph 𝑔(π‘₯) = π‘₯ 𝑠𝑖𝑛(1⁄π‘₯) to estimate lim 𝑔(π‘₯), zooming in on the origin as necessary π‘₯β†’0

(b) Confirm your estimate in part (a) with a proof.


1
Expert's answer
2021-10-05T11:27:52-0400

(a)





lim⁑xβ†’0g(x)=lim⁑xβ†’0xsin⁑(1/x)=0\lim\limits_{x\to 0}g(x)=\lim\limits_{x\to 0}x\sin(1/x)=0

(b)

Use the Squeeze Theorem


βˆ’1≀sin⁑(1/x)≀1,x∈R,x=ΜΈ0-1\leq \sin(1/x)\leq 1, x\in\R, x\not=0

Then


βˆ’x≀xsin⁑(1/x)≀x,x∈R,x>0-x\leq x\sin(1/x)\leq x, x\in\R, x>0

lim⁑xβ†’0+(βˆ’x)=lim⁑xβ†’0+x=0\lim\limits_{x\to 0^+}(-x)=\lim\limits_{x\to 0^+}x=0

By Squeeze Theorem


lim⁑xβ†’0+xsin⁑(1/x)=0\lim\limits_{x\to 0^+}x\sin(1/x)=0

x≀xsin⁑(1/x)β‰€βˆ’x,x∈R,x<0x\leq x\sin(1/x)\leq -x, x\in\R, x<0

lim⁑xβ†’0βˆ’(βˆ’x)=lim⁑xβ†’0βˆ’x=0\lim\limits_{x\to 0^-}(-x)=\lim\limits_{x\to 0^-}x=0

By Squeeze Theorem


lim⁑xβ†’0βˆ’xsin⁑(1/x)=0\lim\limits_{x\to 0^-}x\sin(1/x)=0

We have


lim⁑xβ†’0βˆ’xsin⁑(1/x)=0=lim⁑xβ†’0+xsin⁑(1/x)\lim\limits_{x\to 0^-}x\sin(1/x)=0=\lim\limits_{x\to 0^+}x\sin(1/x)

Therefore


lim⁑xβ†’0xsin⁑(1/x)=0\lim\limits_{x\to 0}x\sin(1/x)=0



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS