a)
"\\iint_S curlF\\cdot nds=\\oint_C F\\cdot dr"
where F is C1- -vector field defined on an open region in R3 containing S, and S and C are piecewise smooth, and n is the outward normal of the surface and C is positively oriented (anti-clockwise).
b)
"C=\\{(x,y,z):z=9,x^2+y^2=9\\}"
 parametrise C:
"r(t)=(3cost,3sint,9)" , "0\\le t\\le 2\\pi"
"r'(t)=(-3sint,3cost,0)"
"F(r(t))=F(3cost,3sint,9)=(3sint,-3cost,9)"
Using Stokes’s Theorem:
"\\iint_S curlF\\cdot nds=\\oint_C F\\cdot dr=\\int^{2\\pi}_0F(r(t))\\cdot r'(t)dt="
"=\\int^{2\\pi}_0(3sint,-3cost,9)\\cdot(-3sint,3cost,0)dt="
"=\\int^{2\\pi}_0(-9sin^2t-9cos^2t)dt=-18\\pi"
Comments
Leave a comment