a)
∬ScurlF⋅nds=∮CF⋅dr
where F is C1- -vector field defined on an open region in R3 containing S, and S and C are piecewise smooth, and n is the outward normal of the surface and C is positively oriented (anti-clockwise).
b)
C={(x,y,z):z=9,x2+y2=9}
parametrise C:
r(t)=(3cost,3sint,9) , 0≤t≤2π
r′(t)=(−3sint,3cost,0)
F(r(t))=F(3cost,3sint,9)=(3sint,−3cost,9)
Using Stokes’s Theorem:
∬ScurlF⋅nds=∮CF⋅dr=∫02πF(r(t))⋅r′(t)dt=
=∫02π(3sint,−3cost,9)⋅(−3sint,3cost,0)dt=
=∫02π(−9sin2t−9cos2t)dt=−18π
Comments