1,
"\\overline{a}=(2,4,-1)||V"
"A(1,0,2)\\isin L_1"
"B(3,4,3)\\isin L_2"
"\\overline{AB}=(2,4,1)||V"
"\\overline{n}=[\\overline{a},\\overline{AB}]=\\begin{vmatrix}\n i & j&k \\\\\n 2 & 4&-1\\\\\n2&4&1\n\\end{vmatrix}=8i-4j=(8,-4,0)"
equation for V:
"8(x-1)-4y=0"
"2x-y-2=0"
2.
 Let "\\varepsilon" > 0 be given.
triangle inequality:
"|x-y|=|(x-2)-(y-2)|\\le|x-2|-|y-2|"
Also:
"|x-2|\\le\\sqrt{|x-2|^2}\\le|(x-2),(y-2)|"
and
"|y-2|\\le|(x-2),(y-2)|"
 Therefore:
"|x-y|\\le2|(x-2),(y-2)|"
 Set "\\delta=\\varepsilon\/2" , then if
"0<2|(x-2),(y-2)|<\\delta"
we have
"|y-2|\\le|(x-2),(y-2)|<2\\delta=\\varepsilon"
3.
 On the curve C1: x=0
"\\displaystyle{\\lim_{(x,y)\\to(0,0)}}\\frac{x^2+y}{x-y}=\\displaystyle{\\lim_{(x,y)\\to(0,0)}}\\frac{y}{-y}=-1"
On the curve C2: y=0
"\\displaystyle{\\lim_{(x,y)\\to(0,0)}}\\frac{x^2+y}{x-y}=\\displaystyle{\\lim_{(x,y)\\to(0,0)}}\\frac{x^2}{x}=0"
 As the limits are not equal, "\\frac{x^2+y}{x-y}"  cannot have a limit at (0,0).
4.
a)
Let
"g(x,y,z)=x^2-xy-y^2-z"
"gradg" is normal to the graph of f.
"gradg(x,y,z)=(2x-2y,2y-2x,-1)"
Therefore "gradg(1, \u22121, 4) = (4, \u22124, 1)" will be normal to the tangent plane V .
b)
"(x,y,z)(4,-4,-1)=(1,-1,4)(4,-4,-1)"
"4x-4y-z=4"
Comments
Leave a comment