Question #246033
1. L1 and L2 are lines in R
3
. A parametric equation for L1 is
(x, y, z) = (1, 0, 2) + t(2, 4, −1); t ∈ R.
L2 is parallel to L1 and contains the point (3, 4, 3). V is the plane that contains both the lines L1 and L2. Find
an equation for V . [7]
2. Prove from first principles that
lim
(x,y)→(2,2)
(x − y) = 0.
[8]
3. Prove that lim
(x,y)→(0,0)
x
2 + y
x − y
does not exist. [8]
4. Consider the R
2 − R function f defined by
f (x, y) = x
2 − 2xy + y
2
.
Let V be the plane that is tangent to the graph of f at the point (x, y, z) = (1, −1, 4).
(a) Find a vector that is perpendicular to the plane V . (4)
(b) Find an equation for the plane V .
1
Expert's answer
2021-10-04T16:23:17-0400

1,

a=(2,4,1)V\overline{a}=(2,4,-1)||V

A(1,0,2)L1A(1,0,2)\isin L_1

B(3,4,3)L2B(3,4,3)\isin L_2

AB=(2,4,1)V\overline{AB}=(2,4,1)||V

n=[a,AB]=ijk241241=8i4j=(8,4,0)\overline{n}=[\overline{a},\overline{AB}]=\begin{vmatrix} i & j&k \\ 2 & 4&-1\\ 2&4&1 \end{vmatrix}=8i-4j=(8,-4,0)

equation for V:

8(x1)4y=08(x-1)-4y=0

2xy2=02x-y-2=0


2.

 Let ε\varepsilon > 0 be given.

triangle inequality:

xy=(x2)(y2)x2y2|x-y|=|(x-2)-(y-2)|\le|x-2|-|y-2|

Also:

x2x22(x2),(y2)|x-2|\le\sqrt{|x-2|^2}\le|(x-2),(y-2)|

and

y2(x2),(y2)|y-2|\le|(x-2),(y-2)|

 Therefore:

xy2(x2),(y2)|x-y|\le2|(x-2),(y-2)|

 Set δ=ε/2\delta=\varepsilon/2 , then if

0<2(x2),(y2)<δ0<2|(x-2),(y-2)|<\delta

we have

y2(x2),(y2)<2δ=ε|y-2|\le|(x-2),(y-2)|<2\delta=\varepsilon


3.

 On the curve C1: x=0

lim(x,y)(0,0)x2+yxy=lim(x,y)(0,0)yy=1\displaystyle{\lim_{(x,y)\to(0,0)}}\frac{x^2+y}{x-y}=\displaystyle{\lim_{(x,y)\to(0,0)}}\frac{y}{-y}=-1


On the curve C2: y=0

lim(x,y)(0,0)x2+yxy=lim(x,y)(0,0)x2x=0\displaystyle{\lim_{(x,y)\to(0,0)}}\frac{x^2+y}{x-y}=\displaystyle{\lim_{(x,y)\to(0,0)}}\frac{x^2}{x}=0


 As the limits are not equal, x2+yxy\frac{x^2+y}{x-y}  cannot have a limit at (0,0).


4.

a)

Let

g(x,y,z)=x2xyy2zg(x,y,z)=x^2-xy-y^2-z

gradggradg is normal to the graph of f.

gradg(x,y,z)=(2x2y,2y2x,1)gradg(x,y,z)=(2x-2y,2y-2x,-1)

Therefore gradg(1,1,4)=(4,4,1)gradg(1, −1, 4) = (4, −4, 1) will be normal to the tangent plane V .


b)

(x,y,z)(4,4,1)=(1,1,4)(4,4,1)(x,y,z)(4,-4,-1)=(1,-1,4)(4,-4,-1)

4x4yz=44x-4y-z=4


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS