Question #245439

g(x) = ax + b / x, x≠k

given g(2)-3 & g(-2)=5


a) value of k

b) the values of a and b

c) the value of h if g-1(h)=2 (is this inverse)?


1
Expert's answer
2021-10-05T11:13:43-0400

Solution.


g(x)=ax+bx,xkg(x)=\frac{ax+b}{x}, x\neq k

a) such as domain g(x) is equal (,0)(0,),(-\infty,0)\bigcup (0,\infty), so k=0.k=0.

b) such as g(2)=-3, we will have 2a+b2=3.\frac{2a+b}{2}=-3. From here 2a+b=6.2a+b=-6.

such as g(-2)=5, we will have 2a+b2=5.\frac{-2a+b}{-2}=5. From here 2a+b=10.-2a+b=-10.

Solve system

2a+b=10,2a+b=6.-2a+b=-10,\newline 2a+b=-6.

Solve this system by adding:2a+2a+b+b=106,2b=16,b=16:2,b=8.-2a+2a+b+b=-10-6,\newline 2b=-16,\newline b=-16:2,\newline b=-8.

Substitute the value of b in the first equation of the system, then

2a8=10,2a=2,a=1.-2a-8=-10,\newline -2a=-2,\newline a=1.

So, a=1,b=8.a=1, b=-8.

c) g(x)=x8x.g(x)=\frac{x-8}{x}.

Find g1(x).g^{-1}(x). To do this, express the variable x through the variable g:

gx=x8,gxx=8,(g1)x=8,x=8g1=81g.gx=x-8,\newline gx-x=-8,\newline (g-1)x=-8,\newline x=\frac{-8}{g-1}=\frac{8}{1-g}.

And swap the variables g and x. We will have g1(x)=81x.g^{-1}(x)=\frac{8}{1-x}.

Such as g1(h)=2,g^{-1}(h)=2, so

81h=2.\frac{8}{1-h}=2.

From here 1h=4,1-h=4, and h=3.h=-3.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS