Find the linearization of the function f(x,y) = ye^x + 2x^2 y at the point (0,2) and use the result to approximate f (0.1, 1.9) to three decimal places.
L(x,y)=f(a,b)+∂f(x,y)∂x∣a,b(x−a)+∂f(x,y)∂y∣a,b(y−b)L(x,y)=f(a,b)+\frac{\partial f(x,y)}{\partial x}|_{a,b}(x-a)+\frac{\partial f(x,y)}{\partial y}|_{a,b}(y-b)L(x,y)=f(a,b)+∂x∂f(x,y)∣a,b(x−a)+∂y∂f(x,y)∣a,b(y−b)
f(0,2)=2f(0,2)=2f(0,2)=2
fx=yex+4xyf_x=ye^x+4xyfx=yex+4xy
fx(0,2)=2f_x(0,2)=2fx(0,2)=2
fy=ex+2x2f_y=e^x+2x^2fy=ex+2x2
fy(0,2)=1f_y(0,2)=1fy(0,2)=1
L(x,y)=2+2x+y−2=2x+yL(x,y)=2+2x+y-2=2x+yL(x,y)=2+2x+y−2=2x+y
f(0.1,1.9)=0.2+1.9=2.100f(0.1,1.9)=0.2+1.9=2.100f(0.1,1.9)=0.2+1.9=2.100
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments