Answer to Question #244836 in Calculus for Shee

Question #244836

If y=sin2ax+cosax,prove that yn=a^n{1+(-1) sin2ax}^1/2


1
Expert's answer
2021-10-01T15:52:01-0400

"\\begin{aligned}\ny &=\\sin a x+\\cos a x \\\\\ny_{n} &=a^{n} \\sin \\left\\{\\frac{n \\pi}{2}+a x\\right\\}+b^{n} \\cos \\left\\{\\frac{n \\pi}{2}+a x\\right\\} \\\\\n&=a^{n}\\left(\\sin \\left\\{\\frac{n \\pi}{2}+a x\\right\\}+\\cos \\left\\{\\frac{n \\pi}{2}+a x\\right\\}\\right)\n\\end{aligned}\\\\\n \nSince (\\sin a x+\\cos a x)=(1+\\sin 2 a x)^{\\frac{1}{2}} , then\\\\\n \n\\begin{aligned}\ny_{n} &=a^{n}\\left\\{1+\\sin 2\\left(\\frac{n \\pi}{2}+a x\\right)\\right\\} \\\\\n&=a^{n}\\left\\{1+\\sin \\left(\\frac{2 n \\pi}{2}+2 a x\\right)\\right\\}^{\\frac{1}{2}} \\\\\n&=\\left\\{1+(-1)^{n} \\sin 2 a x\\right\\}^{\\frac{1}{2}}\n\\end{aligned}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS