If y=sin2ax+cosax,prove that yn=a^n{1+(-1) sin2ax}^1/2
"\\begin{aligned}\ny &=\\sin a x+\\cos a x \\\\\ny_{n} &=a^{n} \\sin \\left\\{\\frac{n \\pi}{2}+a x\\right\\}+b^{n} \\cos \\left\\{\\frac{n \\pi}{2}+a x\\right\\} \\\\\n&=a^{n}\\left(\\sin \\left\\{\\frac{n \\pi}{2}+a x\\right\\}+\\cos \\left\\{\\frac{n \\pi}{2}+a x\\right\\}\\right)\n\\end{aligned}\\\\\n \nSince (\\sin a x+\\cos a x)=(1+\\sin 2 a x)^{\\frac{1}{2}} , then\\\\\n \n\\begin{aligned}\ny_{n} &=a^{n}\\left\\{1+\\sin 2\\left(\\frac{n \\pi}{2}+a x\\right)\\right\\} \\\\\n&=a^{n}\\left\\{1+\\sin \\left(\\frac{2 n \\pi}{2}+2 a x\\right)\\right\\}^{\\frac{1}{2}} \\\\\n&=\\left\\{1+(-1)^{n} \\sin 2 a x\\right\\}^{\\frac{1}{2}}\n\\end{aligned}"
Comments
Leave a comment