Find all 4 of the second order partial derivatives for the function f(x,y)=e^-xy +x^2y cos(x) -y^2
fx=−ye−xy+2xycosx−x2ysinxf_x=-ye^{-xy}+2xycosx-x^2ysinxfx=−ye−xy+2xycosx−x2ysinx
fy=−xe−xy+x2cosx−2yf_y=-xe^{-xy}+x^2cosx-2yfy=−xe−xy+x2cosx−2y
fxx=y2e−xy+2ycosx−2xysinx−2xysinx−x2ycosx=f_{xx}=y^2e^{-xy}+2ycosx-2xysinx-2xysinx-x^2ycosx=fxx=y2e−xy+2ycosx−2xysinx−2xysinx−x2ycosx=
=y2e−xy+ycosx(2−x2)−4xysinx=y^2e^{-xy}+ycosx(2-x^2)-4xysinx=y2e−xy+ycosx(2−x2)−4xysinx
fxy=fyx=−e−xy+xye−xy+2xcosx−x2sinx=f_{xy}=f_{yx}=-e^{-xy}+xye^{-xy}+2xcosx-x^2sinx=fxy=fyx=−e−xy+xye−xy+2xcosx−x2sinx=
=e−xy(xy−1)+2xcosx−x2sinx=e^{-xy}(xy-1)+2xcosx-x^2sinx=e−xy(xy−1)+2xcosx−x2sinx
fyy=x2e−xy−2f_{yy}=x^2e^{-xy}-2fyy=x2e−xy−2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment