Use the implicit differentiation formula to find dy/dx for the equation arctan(x^2 y) = x + xy^2
Given that "tan^{-1} (x^2y)=x+xy^2"
Differentiating both sides, we get:
"\\frac{1}{1+x^4y^2}\\times (2xy+x^2\\frac{dy}{dx})=1+y^2+2xy\\frac{dy}{dx}\\\\"
"\\Rightarrow \\frac{2xy}{1+x^4y^2}+\\frac{x^2}{1+x^4y^2}\\frac{dy}{dx}=1+y^2+2xy\\frac{dy}{dx}\\\\"
"\\Rightarrow \\frac{dy}{dx}(\\frac{x^2}{1+x^4y^2}-2xy)=1+y^2-\\frac{2xy}{1+x^4y^2}\\\\\n\\Rightarrow \\frac{dy}{dx}(\\frac{x^2-2xy-2x^5y^2}{1+x^4y^2})=\\frac{1+x^4y^2+y^2+x^4y^4-2xy}{1+x^4y^2}\\\\\n\\Rightarrow \\frac{dy}{dx}=\\frac{1+x^4y^2+y^2+x^4y^4-2xy}{x^2-2xy-2x^5y^2}"
Comments
Leave a comment