Given that tan−1(x2y)=x+xy2
Differentiating both sides, we get:
1+x4y21×(2xy+x2dxdy)=1+y2+2xydxdy
⇒1+x4y22xy+1+x4y2x2dxdy=1+y2+2xydxdy
⇒dxdy(1+x4y2x2−2xy)=1+y2−1+x4y22xy⇒dxdy(1+x4y2x2−2xy−2x5y2)=1+x4y21+x4y2+y2+x4y4−2xy⇒dxdy=x2−2xy−2x5y21+x4y2+y2+x4y4−2xy
Comments
Leave a comment