Answer to Question #244998 in Calculus for Susan

Question #244998

Use the implicit differentiation formula to find dy/dx for the equation arctan(x^2 y) = x + xy^2


1
Expert's answer
2021-10-01T15:24:23-0400

Given that tan1(x2y)=x+xy2tan^{-1} (x^2y)=x+xy^2

Differentiating both sides, we get:

11+x4y2×(2xy+x2dydx)=1+y2+2xydydx\frac{1}{1+x^4y^2}\times (2xy+x^2\frac{dy}{dx})=1+y^2+2xy\frac{dy}{dx}\\

2xy1+x4y2+x21+x4y2dydx=1+y2+2xydydx\Rightarrow \frac{2xy}{1+x^4y^2}+\frac{x^2}{1+x^4y^2}\frac{dy}{dx}=1+y^2+2xy\frac{dy}{dx}\\

dydx(x21+x4y22xy)=1+y22xy1+x4y2dydx(x22xy2x5y21+x4y2)=1+x4y2+y2+x4y42xy1+x4y2dydx=1+x4y2+y2+x4y42xyx22xy2x5y2\Rightarrow \frac{dy}{dx}(\frac{x^2}{1+x^4y^2}-2xy)=1+y^2-\frac{2xy}{1+x^4y^2}\\ \Rightarrow \frac{dy}{dx}(\frac{x^2-2xy-2x^5y^2}{1+x^4y^2})=\frac{1+x^4y^2+y^2+x^4y^4-2xy}{1+x^4y^2}\\ \Rightarrow \frac{dy}{dx}=\frac{1+x^4y^2+y^2+x^4y^4-2xy}{x^2-2xy-2x^5y^2}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment