The sketch of the region is as shown in the figure below:
The integration of the function is evaluated as,
"\\iint f(x,y)dA=\\int_{1}^{2}\\int_{0}^{x^2-1}(x+y)dydx"
"=\\int_{1}^{2}[xy+(y^2\/2)]_{0}^{x^2-1}dx"
"=\\int_{1}^{2}(x^3-x+\\frac {1}{2}(x^4-2x^2+1))dx"
"=\\frac{1}{2}\\int_{1}^{2}(x^4+2x^3-2x^2-2x+1)dx"
"=\\frac{1}{2}[\\frac{x^5}{5}+\\frac{2}{4}x^4-\\frac{2}{3}x^3-x^2+x]_{1}^{2}"
"=\\frac{211}{60}"
Comments
Leave a comment