8.
Parametrise the line:
"r(t)=(1,0,-1)+t[(2,1,1)-(1,0,-1)]=(t+1,t,2t-1), t\\isin [0,1]"
Then:
"r'(t)=(1,1,2)"
"|r'(t)|=\\sqrt{1+1+4}=\\sqrt{6}"
"ds=|r'(t)|dt=\\sqrt{6}dt"
"f(r(t))=t^2+3t-1"
"\\int(xy+z)ds=\\sqrt{6}\\int^1_0(t^2+3t-1)dt=\\sqrt{6}(t^3\/3+3t^2\/2-t)|^1_0=5\/\\sqrt{6}"
9.
a)
b)
maximum value of "\\phi" :
"cos\\phi=1\/\\sqrt{2}"
"\\phi=\\pi\/4"
minimum value of "\\phi" :
"cos\\phi=1\/\\rho"
"\\rho=sec\\phi"
"V=\\iiint dV=\\int^{2\\pi}_{0}\\int^{\\pi\/4}_{0}\\int^{\\sqrt{2}}_{sec\\phi}\\rho^2sec\\phi d\\rho d\\phi d\\theta"
10.
a)
The XY -projection:
b)
"f(x,y)=\\sqrt{x^2+y^2}"
"\\frac{df}{dx}=\\frac{x}{\\sqrt{x^2+y^2}}"
"\\frac{df}{dy}=\\frac{y}{\\sqrt{x^2+y^2}}"
"\\sqrt{(\\frac{df}{dx})^2+(\\frac{df}{dx})^2+1}=\\sqrt{2}"
"\\iint ds=\\iint \\sqrt{2}dR"
 in polar co-ordinates:
"R=\\{(r,\\theta): 1\\le r\\le3,0\\le \\theta\\le 2\\pi\\}"
"\\iint \\sqrt{2}dR=\\int^{2\\pi}_0\\int^3_1 \\sqrt{2}rdrd\\theta=\\frac{\\sqrt{2}}{2}\\int^{2\\pi}_0 r^2|^3_1d\\theta=4\\sqrt{2}\\int^{2\\pi}_0 d\\theta=8\\pi\\sqrt{2}"
Comments
Leave a comment