5. Consider the R
2 â R function f defined by
f (x, y) = â
xy
and the R â R
2
function r defined by
r (t) = ï ¿ ¾
e
2t
, cost
.
Use the General Chain Rule to determine the value of (f â ¦ r)
0
(0). [7]
6. Consider the R
2 â R function f defined by
f (x, y) = 2x + 3y
2 â x
2 + y
3
.
Determine how many saddle points the function f has. (Make use of the Second Order Partial Derivatives
Test for Local Extrema.) [9]
7. Use the Method of Lagrange to determine the largest possible volume that a rectangular block with a square
base can have if the height of the block plus the perimeter of its base equals 30cm
Comments