5)
"r'(t) = (e^t, e^t sin t + e^t cos t, e^t cos t \u2212 e^t sin t)\\\\\n|r'(t)|= \\sqrt{e^{2t}, e^{2t} (sin t + cos t)^2, e^{2t}(sin t- cos t)^2}=e^t \\sqrt3\\\\"
Note that r(0) = (1,0,1) and r(2Ï€) = (e2Ï€; 0; e2Ï€ ). So,
"f*r=\\int _0^{2 \\pi}|r'(t)|dt =\\int _0^{2 \\pi}\\sqrt{3}e^tdt =\\sqrt3(e^{2 \\pi}-1)"
6)
The function is given:
"g(x,y)=y^3-x^2+3y^2+x\\\\\ng_x=-2x+1 \\implies 0=-2x+1 \\implies x = \\frac{1}{2} ; g_y=3y^2+6y \\implies 3y^2+6y=0 \\implies y = 0,-2 \\\\"
Critical points
"(0.5,0) , (0.5,-2)"
Point of extrema
"(x,y)=(0.5,0)\\\\\nD= -12(-2+1)=12>0\\\\\n\\implies maxima = (0.5,-2)\\\\\n\\implies saddle = (0.5,0)"
7)
"V= x^2h\\\\\nS= x^2h+ \\lambda (h+4x-30) \\implies \\frac{\\partial }{\\partial x}\\left(s\\right)=2xh+4 \\lambda ; \\frac{\\partial }{\\partial h}\\left(s\\right)=x^2+ \\lambda\\\\\n\\lambda =-x^2, 2 \\lambda =-xh\\\\\n-2x^2=-xh\\\\\n2x=h\\\\\n2x+4x=30\\\\\nx=5;h=10\\\\\nV= x^2h=5^2*10=250 \\space cubic \\space units"
Comments
Leave a comment