Question #246047

Let

Ζ’(x) = π‘₯1/(1βˆ’x) .

Make tables of values of Ζ’ at values of x that approach x = 1 from above and below. Does Ζ’(x)

appear to have a limit as x approaches 1? If so, what is it? If not, why not?


1
Expert's answer
2021-10-04T16:21:58-0400

Let y=f(x)=x+11βˆ’xy=f(x)=\dfrac{x+1}{1-x}


xy0.9190.991990.99919990.9999199991.0001βˆ’200011.001βˆ’20011.01βˆ’2011.1βˆ’21\def\arraystretch{1.5} \begin{array}{c:c} x & y \\ \hline 0.9 & 19 \\ 0.99 & 199 \\ 0.999 & 1999 \\ 0.9999 & 19999 \\ 1.0001 & -20001 \\ 1.001 & -2001 \\ 1.01 & -201 \\ 1.1 & -21 \\ \end{array}


lim⁑xβ†’1βˆ’f(x)=∞\lim\limits_{x\to1^-}f(x)=\infin

lim⁑xβ†’1+f(x)=βˆ’βˆž\lim\limits_{x\to1^+}f(x)=-\infin

Since lim⁑xβ†’1βˆ’f(x)=ΜΈlim⁑xβ†’1+f(x),\lim\limits_{x\to1^-}f(x)\not=\lim\limits_{x\to1^+}f(x), then lim⁑xβ†’1f(x)\lim\limits_{x\to1}f(x) does not exist.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS