If f is continuous and "\\intop f (x) dx=6 (upper limit=2, lower limit=0)" ,evaluate
"\\intop f(2sin\\theta) cos\\theta d\\theta (upper limit=\\pi\/2 ,lower limit=0)"
Solution:
Given,"\\int_0^2 f(x)dx=6" ...(i)
Let "I=\\int_0^{\\pi\/2} f(2\\sin \\theta)\\cos \\theta d\\theta"
Put "2\\sin \\theta=t"
"\\Rightarrow 2\\cos \\theta=\\dfrac{dt}{d\\theta}"
When "\\theta=0,t=0; \\theta=\\pi\/2,t=2"
So, "I=\\frac12\\int_0^{2}f(t)dt"
"=\\frac12\\times 6" [Using (i)]
"=3"
Comments
Leave a comment