y=x3−x2 Domain: (−∞,∞)
Find the first derivative
y′=(x3−x2)′=3x2−2x Find the critical point(s)
y′=0=>3x2−2x=0
x(3x−2)=0
x1=0,x2=32Critical numbers: 0,32.
First Derivative Test
If x<0, then y′>0,y increases.
If 0<x<32, then y′<0,y decreases.
If x>32, then y′>0,y increases.
y(0)=(0)3−(0)2=0
y(0)=(32)3−(32)2=−274The function y=x3−x2 has a local maximum with value of at x=0,
Point(0,0).
The function y=x3−x2 has a local minimum with value of 32 at x=−274,
Point(−32,−274).
Since the function y=x3−x2 is defined on R, the function y has neither absolute maximum nor absolute minimum.
Comments