Question #233607

find the maximum and minimum points of the function x3-x2

1
Expert's answer
2021-09-06T16:31:58-0400
y=x3x2y=x^3-x^2

Domain: (,)(-\infin, \infin)

Find the first derivative


y=(x3x2)=3x22xy'=(x^3-x^2)'=3x^2-2x

Find the critical point(s)


y=0=>3x22x=0y'=0=>3x^2-2x=0

x(3x2)=0x(3x-2)=0

x1=0,x2=23x_1=0, x_2=\dfrac{2}{3}

Critical numbers: 0,23.0, \dfrac{2}{3}.

First Derivative Test

If x<0,x<0, then y>0,yy'>0, y increases.

If 0<x<23,0<x<\dfrac{2}{3}, then y<0,yy'<0, y decreases.

If x>23,x>\dfrac{2}{3}, then y>0,yy'>0, y increases.


y(0)=(0)3(0)2=0y(0)=(0)^3-(0)^2=0

y(0)=(23)3(23)2=427y(0)=(\dfrac{2}{3})^3-(\dfrac{2}{3})^2=-\dfrac{4}{27}

The function y=x3x2y=x^3-x^2 has a local maximum with value of at x=0,x=0,

Point(0,0).Point(0, 0).

The function y=x3x2y=x^3-x^2 has a local minimum with value of 23\dfrac{2}{3} at x=427,x=-\dfrac{4}{27},

Point(23,427).Point(-\dfrac{2}{3}, -\dfrac{4}{27}).


Since the function y=x3x2y=x^3-x^2 is defined on R,\R, the function yy has neither absolute maximum nor absolute minimum.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS