True or False:
Consider the integral "\\displaystyle{\\int \\frac{x^3+x}{x-1}}dx" To evaluate the integral, we need to first perform the long division.
True
"\\frac{x^3+x}{x-1}=x^2+\\frac{x^2+x}{x-1}\\\\\n=x^2+x+2+\\frac{2}{x-1}\\\\\n\\frac{x^3+x}{x-1}=x^2-x+2-\\frac{2}{x+1}\\\\\n\\mathrm{Apply\\:the\\:Sum\\:Rule}:\\quad \\int f\\left(x\\right)\\pm g\\left(x\\right)dx=\\int f\\left(x\\right)dx\\pm \\int g\\left(x\\right)dx\\\\\n=\\frac{x^3}{3}-\\frac{x^2}{2}+2x-2\\ln \\left|x+1\\right|"
Comments
Leave a comment