If f(0) = g(0) = 0 and f'' and g'' are continuous, show that
the integral of f(x)g''(x)dx (from 0 to a) = f(a)g'(a) - f'(a)g(a) + the integral of f''(x)g(x)dx (from 0 to a).
If f(0)=g(0)=0f(0)=g(0)=0f(0)=g(0)=0
Since, f'' and g'' are continuous
∫0af(x)g′′(x)dx=[f(x)∫g′′(x)dx]0a−[∫[ddxf(x)∫g′′(x)dx]dx]0a=f(a)g′(a)−f(0)g′(0)−[∫[[f′(x)g′(x)]]dx]0a=f(a)g′(a)−[∫[f′(x)g′(x)]]0a=f(a)g′(a)−f′(a)g(a)+∫0af′′(x)g(x)dx\int^a_0 f(x) g''(x)dx = [f(x) \int g''(x)dx]^a_0 - [\int[\frac{d}{dx}f(x) \int g''(x)dx]dx]^a_0 \\ = f(a)g'(a) -f(0)g'(0) -[\int[[f'(x)g'(x)]]dx]^a_0 \\ = f(a) g'(a) -[\int[f'(x) g'(x)]]^a_0 \\ = f(a)g'(a) -f'(a)g(a) + \int^a_0 f''(x) g(x)dx∫0af(x)g′′(x)dx=[f(x)∫g′′(x)dx]0a−[∫[dxdf(x)∫g′′(x)dx]dx]0a=f(a)g′(a)−f(0)g′(0)−[∫[[f′(x)g′(x)]]dx]0a=f(a)g′(a)−[∫[f′(x)g′(x)]]0a=f(a)g′(a)−f′(a)g(a)+∫0af′′(x)g(x)dx
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment