(a)
(b)
"\\text{Given } Z=g(x,y)=3-x^2-y^2, z\\ge2\n\\\\\n\\text{for this problem }\n\\\\ \n \\hspace{30pt} g_x=-2x \\text{ and } g_y=-2y\n\\\\\n\\text{If follows that the normal vector is } \\left\\langle { - 2x, - 2y, - 1} \\right\\rangle \n\\\\\n\\implies \\overrightarrow F \\cdot \\overrightarrow n = \\left\\langle {2y,3z,4y} \\right\\rangle \\cdot \\left\\langle { - 2x, - 2y, - 1} \\right\\rangle =-4xy-6yz-4y\n\\\\\n\\implies \\text{Flux }=\\iint_R {\\left( { - 4xy - 6yz - 4y} \\right)dA}\n\\\\\n\\text{The region R is the disk of radius } \\sqrt{2} \\le r \\le \\sqrt{3}, \\text{ and } 0 \\le \\theta \\le 2\\pi.\n\\\\\\text{Substituting } x=r\\cos\\theta \\text{ and } y=r\\sin\\theta,\n\\\\\n\\text{Flux }= \\int_0^{2\\pi } {\\int_{\\sqrt 2 }^{\\sqrt 3 } {\\left( { - 4{r^2}\\sin \\theta \\cos \\theta - 6r\\sin \\theta \\left( {3 - {r^2}} \\right) - 4r\\sin \\theta } \\right)rdrd\\theta } } \n\\\\\n\\hspace{25pt} = \\int_0^{2\\pi } {\\int_{\\sqrt 2 }^{\\sqrt 3 } {\\left( { - 4{r^3}\\sin \\theta \\cos \\theta - {r^2}\\sin \\theta \\left( {22 - 6{r^2}} \\right)} \\right)drd\\theta } } \n\\\\\n\\hspace{25pt} = \\int_0^{2\\pi } {\\left[ { - {r^4}\\sin \\theta \\cos \\theta + \\frac{{6{r^5}}}{5}\\sin \\theta - \\frac{{22{r^3}}}{3}\\sin \\theta } \\right]} _{\\sqrt 2 }^{\\sqrt 3 }d\\theta \n\\\\\n\\hspace{25pt} = \\int_0^{2\\pi } {\\frac{{ - 56\\sqrt 3 }}{5}} \\sin \\theta - 5\\sin \\theta \\cos \\theta + \\frac{{148}}{{15}}\\sqrt 2 \\sin \\theta d\\theta \n\\\\\n\\hspace{25pt} =\\left[ { - \\frac{{148\\sqrt 2 }}{{15}}\\cos \\theta + \\frac{{56\\sqrt 3 }}{5}\\cos \\theta - \\frac{5}{2}{{\\sin }^2}\\theta } \\right]_0^{2\\pi }\n\\\\\n\\hspace{25pt} = 0."
Comments
Leave a comment