Consider the surface S = (x, y, z) ∈ R 3 | z = 3 − x 2 − y 2 ; z ≥ 2 . Assume that S is oriented upward and let C be the oriented boundary of S. (a) Sketch the surface S in R 3 . Also show the oriented curve C and the XY-projection of the surface S on your sketch. (2) (b) Let F (x, y, z) = (2y, 3z, 4y). Evaluate the flux integral Z Z S (curl F)
1
Expert's answer
2022-01-04T16:18:02-0500
(a)
(b)
Given Z=g(x,y)=3−x2−y2,z≥2for this problem gx=−2x and gy=−2yIf follows that the normal vector is ⟨−2x,−2y,−1⟩⟹F⋅n=⟨2y,3z,4y⟩⋅⟨−2x,−2y,−1⟩=−4xy−6yz−4y⟹Flux =∬R(−4xy−6yz−4y)dAThe region R is the disk of radius 2≤r≤3, and 0≤θ≤2π.Substituting x=rcosθ and y=rsinθ,Flux =∫02π∫23(−4r2sinθcosθ−6rsinθ(3−r2)−4rsinθ)rdrdθ=∫02π∫23(−4r3sinθcosθ−r2sinθ(22−6r2))drdθ=∫02π[−r4sinθcosθ+56r5sinθ−322r3sinθ]23dθ=∫02π5−563sinθ−5sinθcosθ+151482sinθdθ=[−151482cosθ+5563cosθ−25sin2θ]02π=0.
Comments