Question #233046

Evaluate the integral 01xx+1dx\displaystyle{\int_{0}^{1}\frac{x}{x+1}dx}

  1. 1ln21-\ln{ 2}
  2. ln2\ln{2}
  3. 0
  4. ln2-\ln{2}





1
Expert's answer
2021-09-06T16:33:50-0400

01xx+1dx=01x+11x+1dx\displaystyle\int_{0}^{1}\dfrac{x}{x+1}dx=\displaystyle\int_{0}^{1}\dfrac{x+1-1}{x+1}dx

=01dx011x+1dx=\displaystyle\int_{0}^{1}dx-\displaystyle\int_{0}^{1}\dfrac{1}{x+1}dx

=[x]10ln(x+1)10=[x]\begin{matrix} 1 \\ 0 \end{matrix}-\ln(|x+1|)\begin{matrix} 1 \\ 0 \end{matrix}

=10(ln(1+1)ln(0+1))=1-0-(\ln(|1+1|)-\ln(|0+1|))

=1ln2=1-\ln2



1. 1ln21-\ln2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS