Question #233341

i) A particle moves along a line with velocity function v(t)= (t2 - t), where v is measured in meters per second. Find (a) the displacement and (b) the distance traveled by

the particle during the time interval [ 0, 5]


ii) Use the properties of integrals to verify the inequality.

Integral of (sinx/x)dx\intop (sinx/x) dx Upper limit (π\pi /2) and Lower limit (π\pi /4) <= ( √2 / 2) .


iii).Evaluate the intregal, if it exists.

  1. (1+tant)\intop (1+ tan t) 3 sec2t dt ( Upper limit (π\pi /4) and Lower limit (0)
  2. x1\intop\begin{vmatrix} √x - 1 \\ \end{vmatrix} dx (Upper limit (4) and Lower limit (0)
  3. \intoptan x ln(cos x) dx
1
Expert's answer
2021-09-07T17:29:04-0400

i)

a)


s(t)=v(t)dt=(t2t)dt=t33t22+s(0),ms(t)=\int v(t)dt=\int(t^2-t)dt=\dfrac{t^3}{3}-\dfrac{t^2}{2}+s(0),m



b)


s(5)=(5)33(5)22+s(0)=1756+s(0)(m)s(5)=\dfrac{(5)^3}{3}-\dfrac{(5)^2}{2}+s(0)=\dfrac{175}{6}+s(0) (m)

distance=s(5)s(0)=1756+s(0)s(0)distance=s(5)-s(0)=\dfrac{175}{6}+s(0) -s(0)

=1756(m)=\dfrac{175}{6}(m)

ii)


sinx=i=0(1)nx2n+1(2n+1)!\sin x=\displaystyle\sum_{i=0}^{\infin}\dfrac{(-1)^{n}x^{2n+1}}{(2n+1)!}

sinxx=i=0(1)nx2n(2n+1)!\dfrac{\sin x}{x}=\displaystyle\sum_{i=0}^{\infin}\dfrac{(-1)^{n}x^{2n}}{(2n+1)!}

=1x23!+x45!x67!+...=1-\dfrac{x^2}{3!}+\dfrac{x^4}{5!}-\dfrac{x^6}{7!}+...

Integrate term by term


sinxxdx=i=0(1)nx2n(2n+1)!dx\int\dfrac{\sin x}{x}dx=\int\displaystyle\sum_{i=0}^{\infin}\dfrac{(-1)^{n}x^{2n}}{(2n+1)!}dx

=i=0(1)nx2n+1(2n+1)!(2n+1)+C=\displaystyle\sum_{i=0}^{\infin}\dfrac{(-1)^{n}x^{2n+1}}{(2n+1)!(2n+1)}+C

=C+xx33!(3)+x55!(5)x77!(7)+...=C+x-\dfrac{x^3}{3!(3)}+\dfrac{x^5}{5!(5)}-\dfrac{x^7}{7!(7)}+...

Use the second fundamental theorem of calculus to evaluate


π/4π/2sinxxdx=π/4π/2i=0(1)nx2n(2n+1)!dx\displaystyle\int_{\pi/4}^{\pi/2}\dfrac{\sin x}{x}dx=\displaystyle\int_{\pi/4}^{\pi/2}\displaystyle\sum_{i=0}^{\infin}\dfrac{(-1)^{n}x^{2n}}{(2n+1)!}dx

=[xx33!(3)+x55!(5)x77!(7)+...]π/2π/4=\bigg[x-\dfrac{x^3}{3!(3)}+\dfrac{x^5}{5!(5)}-\dfrac{x^7}{7!(7)}+...\bigg]\begin{matrix} \pi/2 \\ \pi/4 \end{matrix}

π2(π2)318+(π2)5600(π4(π4)318+(π4)5600)\leq\dfrac{\pi}{2}-\dfrac{(\dfrac{\pi}{2})^3}{18}+\dfrac{(\dfrac{\pi}{2})^5}{600}-(\dfrac{\pi}{4}-\dfrac{(\dfrac{\pi}{4})^3}{18}+\dfrac{(\dfrac{\pi}{4})^5}{600})

0.612522\leq0.6125\leq\dfrac{\sqrt{2}}{2}

Therefore

π/4π/2sinxxdx22\displaystyle\int_{\pi/4}^{\pi/2}\dfrac{\sin x}{x}dx\leq\dfrac{\sqrt{2}}{2}

iii)

1.


(1+tant)3sec2tdt\int(1+\tan t)^3\sec^2tdt

u=1+tant,du=sec2tdtu=1+\tan t, du=\sec^2t dt

(1+tant)3sec2tdt=u3du=u44+C\int(1+\tan t)^3\sec^2tdt=\int u^3du=\dfrac{u^4}{4}+C

=(1+tant)44+C=\dfrac{(1+\tan t)^4}{4}+C

2.


04x1dx=01(x1)dx+14(x1)dx\displaystyle\int_{0}^{4}|\sqrt{x}-1|dx=-\displaystyle\int_{0}^{1}(\sqrt{x}-1)dx+\displaystyle\int_{1}^{4}(\sqrt{x}-1)dx

=[2x3/23x]10+[2x3/23x]41=-[\dfrac{2x^{3/2}}{3}-x]\begin{matrix} 1 \\ 0 \end{matrix}+[\dfrac{2x^{3/2}}{3}-x]\begin{matrix} 4 \\ 1 \end{matrix}

=23+1+0+163423+1=2=-\dfrac{2}{3}+1+0+\dfrac{16}{3}-4-\dfrac{2}{3}+1=2

3.


tanxln(cosx)dx\int \tan x\ln(\cos x)dx

u=ln(cosx),du=1cosx(sinx)dx=tanxdxu=\ln(\cos x), du=\dfrac{1}{\cos x}(-\sin x)dx=-\tan xdx

tanxln(cosx)dx=udu=u22+C\int \tan x\ln(\cos x)dx=-\int udu=-\dfrac{u^2}{2}+C

=ln2(cosx)2+C=-\dfrac{\ln^2(\cos x)}{2}+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS