i) A particle moves along a line with velocity function v(t)= (t2 - t), where v is measured in meters per second. Find (a) the displacement and (b) the distance traveled by
the particle during the time interval [ 0, 5]
ii) Use the properties of integrals to verify the inequality.
Integral of "\\intop (sinx\/x) dx" Upper limit ("\\pi" /2) and Lower limit ("\\pi" /4) <= ( √2 / 2) .
iii).Evaluate the intregal, if it exists.
i)
a)
b)
"distance=s(5)-s(0)=\\dfrac{175}{6}+s(0) -s(0)"
"=\\dfrac{175}{6}(m)"
ii)
"\\dfrac{\\sin x}{x}=\\displaystyle\\sum_{i=0}^{\\infin}\\dfrac{(-1)^{n}x^{2n}}{(2n+1)!}"
"=1-\\dfrac{x^2}{3!}+\\dfrac{x^4}{5!}-\\dfrac{x^6}{7!}+..."
Integrate term by term
"=\\displaystyle\\sum_{i=0}^{\\infin}\\dfrac{(-1)^{n}x^{2n+1}}{(2n+1)!(2n+1)}+C"
"=C+x-\\dfrac{x^3}{3!(3)}+\\dfrac{x^5}{5!(5)}-\\dfrac{x^7}{7!(7)}+..."
Use the second fundamental theorem of calculus to evaluate
"=\\bigg[x-\\dfrac{x^3}{3!(3)}+\\dfrac{x^5}{5!(5)}-\\dfrac{x^7}{7!(7)}+...\\bigg]\\begin{matrix}\n \\pi\/2 \\\\\n \\pi\/4\n\\end{matrix}"
"\\leq\\dfrac{\\pi}{2}-\\dfrac{(\\dfrac{\\pi}{2})^3}{18}+\\dfrac{(\\dfrac{\\pi}{2})^5}{600}-(\\dfrac{\\pi}{4}-\\dfrac{(\\dfrac{\\pi}{4})^3}{18}+\\dfrac{(\\dfrac{\\pi}{4})^5}{600})"
"\\leq0.6125\\leq\\dfrac{\\sqrt{2}}{2}"
Therefore
"\\displaystyle\\int_{\\pi\/4}^{\\pi\/2}\\dfrac{\\sin x}{x}dx\\leq\\dfrac{\\sqrt{2}}{2}"
iii)
1.
"u=1+\\tan t, du=\\sec^2t dt"
"\\int(1+\\tan t)^3\\sec^2tdt=\\int u^3du=\\dfrac{u^4}{4}+C"
"=\\dfrac{(1+\\tan t)^4}{4}+C"
2.
"=-[\\dfrac{2x^{3\/2}}{3}-x]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}+[\\dfrac{2x^{3\/2}}{3}-x]\\begin{matrix}\n 4 \\\\\n 1\n\\end{matrix}"
"=-\\dfrac{2}{3}+1+0+\\dfrac{16}{3}-4-\\dfrac{2}{3}+1=2"
3.
"u=\\ln(\\cos x), du=\\dfrac{1}{\\cos x}(-\\sin x)dx=-\\tan xdx"
"\\int \\tan x\\ln(\\cos x)dx=-\\int udu=-\\dfrac{u^2}{2}+C"
"=-\\dfrac{\\ln^2(\\cos x)}{2}+C"
Comments
Leave a comment