Solve the integral by partial fractions
2 x 2 − 2 x = 2 x ( x − 2 ) = A x + B x − 2 \dfrac{2}{x^2-2x}=\dfrac{2}{x(x-2)}=\dfrac{A}{x}+\dfrac{B}{x-2} x 2 − 2 x 2 = x ( x − 2 ) 2 = x A + x − 2 B The sum is added up:
2 x 2 − 2 x = A ( x − 2 ) + B x x ( x − 2 ) \dfrac{2}{x^2-2x}=\dfrac{A(x-2)+Bx}{x(x-2)} x 2 − 2 x 2 = x ( x − 2 ) A ( x − 2 ) + B x Since the two fractions have the same denominator, the numerators must be equal:
2 = A ( x − 2 ) + B x 2=A(x-2)+Bx 2 = A ( x − 2 ) + B x To calculate the values of A A A , B B B , we give x x x the values that cancel out the denominator
x = 0 ⇒ 2 = − 2 A ⇒ A = − 1 x=0\Rightarrow 2=-2A\Rightarrow A=-1 x = 0 ⇒ 2 = − 2 A ⇒ A = − 1
x = 2 ⇒ 2 = 2 B ⇒ B = 1 x=2\Rightarrow 2=2B\Rightarrow B=1 x = 2 ⇒ 2 = 2 B ⇒ B = 1 Integrals of simple fractions are calculated:
∫ 2 x 2 − 2 x d x = − ∫ 1 x d x + ∫ 1 x − 2 d x \int \dfrac{2}{x^2-2x}\, dx=-\int \dfrac1x\, dx+\int \dfrac{1}{x-2}\, dx ∫ x 2 − 2 x 2 d x = − ∫ x 1 d x + ∫ x − 2 1 d x
= − ln ∣ x ∣ + ln ∣ x − 2 ∣ + C = ln ∣ x − 2 x ∣ + C =-\ln |x|+\ln |x-2|+C=\ln \left| \dfrac{x-2}{x}\right|+C = − ln ∣ x ∣ + ln ∣ x − 2∣ + C = ln ∣ ∣ x x − 2 ∣ ∣ + C Comparing with the expression of the statement we see that a = 2 . \boxed{a=2}. a = 2 .
Comments