Question #233062

Consider the integral 2x22xdx=lnxax+C\displaystyle{\int \frac{2}{x^2-2x}dx}=\displaystyle{\ln{\frac{x-a}{x}}+C}

 Which of the following values represent the constant a ?

 

  1. 1
  2. 7
  3. 4
  4. 2




1
Expert's answer
2021-09-06T16:47:02-0400

Solve the integral by partial fractions


2x22x=2x(x2)=Ax+Bx2\dfrac{2}{x^2-2x}=\dfrac{2}{x(x-2)}=\dfrac{A}{x}+\dfrac{B}{x-2}

The sum is added up:


2x22x=A(x2)+Bxx(x2)\dfrac{2}{x^2-2x}=\dfrac{A(x-2)+Bx}{x(x-2)}

Since the two fractions have the same denominator, the numerators must be equal:


2=A(x2)+Bx2=A(x-2)+Bx

To calculate the values of AA , BB , we give xx the values that cancel out the denominator


x=02=2AA=1x=0\Rightarrow 2=-2A\Rightarrow A=-1

x=22=2BB=1x=2\Rightarrow 2=2B\Rightarrow B=1

Integrals of simple fractions are calculated:


2x22xdx=1xdx+1x2dx\int \dfrac{2}{x^2-2x}\, dx=-\int \dfrac1x\, dx+\int \dfrac{1}{x-2}\, dx

=lnx+lnx2+C=lnx2x+C=-\ln |x|+\ln |x-2|+C=\ln \left| \dfrac{x-2}{x}\right|+C

Comparing with the expression of the statement we see that a=2.\boxed{a=2}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS