Evaluate the integral "\\displaystyle{\\int_{0}^{\\pi\/2}\\sin{(x)}\\ln{\\sec{(x)}}dx}"
"\\displaystyle{\\int_{0}^{\\pi\/2}\\sin{(x)}\\ln{\\sec{(x)}}dx}"
Solution
"\\displaystyle{\\int\\sin{(x)}\\ln{\\sec{(x)}}dx}"
Integrate by parts "\\displaystyle\\int fg'=fg-\\int f'g"
"f=ln(sec(x))"
"f'=tan(x)"
"g'=sin(x)"
"g=-cos(x)"
Hence from "\\displaystyle\\int fg'=fg-\\int f'g"
"=-cos(x)ln(sec(x))-\\displaystyle\\int-cos(x)tan(x)dx"
Now solving ;
"\\displaystyle\\int-cos(x)tan(x)dx"
Apply linearity;
"=-\\displaystyle\\int cos(x)tan(x)dx"
Now solving;
"\\displaystyle\\int cos(x)tan(x)dx"
Rewrite/ Simplify using trigonometric/hyperbolic identities
"=\\displaystyle\\int sin(x)dx"
This is the standard integrals:
"=-cos (x)"
Plug in solved integrals;
"=-cos(x)ln(sec(x))-\\displaystyle\\int-cos(x)tan(x)dx"
"=(-cos(x)ln(sec(x))-cos(x)"
The problem is solved
"\\displaystyle{\\int\\sin{(x)}\\ln{\\sec{(x)}}dx}"
"=[-cos(x)ln(sec(x))-cos(x)+C]"
Simplify
"=cos(x)(ln(|cos(x)|)-1)+C"
Hence
"\\displaystyle{\\int_{0}^{\\pi\/2}\\sin{(x)}\\ln{\\sec{(x)}}dx}=\n[cos(x)(ln(|cos(x)|)-1)+C]_0^{\\frac{\u03c0}{2}}"
"=[cos(\\frac{\u03c0}{2})(ln(|cos(\\frac{\u03c0}{2})|)-1)+C]-\n[cos(0)(ln(|cos(0)|)-1)+C]= 1"
Comments
Leave a comment