∫0π/2sin(x)lnsec(x)dx
Solution
∫sin(x)lnsec(x)dx
Integrate by parts ∫fg′=fg−∫f′g
f=ln(sec(x))
f′=tan(x)
g′=sin(x)
g=−cos(x)
Hence from ∫fg′=fg−∫f′g
=−cos(x)ln(sec(x))−∫−cos(x)tan(x)dx
Now solving ;
∫−cos(x)tan(x)dx
Apply linearity;
=−∫cos(x)tan(x)dx
Now solving;
∫cos(x)tan(x)dx
Rewrite/ Simplify using trigonometric/hyperbolic identities
=∫sin(x)dx
This is the standard integrals:
=−cos(x)
Plug in solved integrals;
=−cos(x)ln(sec(x))−∫−cos(x)tan(x)dx
=(−cos(x)ln(sec(x))−cos(x)
The problem is solved
∫sin(x)lnsec(x)dx
=[−cos(x)ln(sec(x))−cos(x)+C]
Simplify
=cos(x)(ln(∣cos(x)∣)−1)+C
Hence
∫0π/2sin(x)lnsec(x)dx=[cos(x)(ln(∣cos(x)∣)−1)+C]02π
=[cos(2π)(ln(∣cos(2π)∣)−1)+C]−[cos(0)(ln(∣cos(0)∣)−1)+C]=1
Comments
Leave a comment