Answer to Question #233072 in Calculus for moe

Question #233072

Evaluate the integral 0π/2sin(x)lnsec(x)dx\displaystyle{\int_{0}^{\pi/2}\sin{(x)}\ln{\sec{(x)}}dx}

  1. 1
  2. 0
  3. 1/2
  4. 8
1
Expert's answer
2021-09-08T08:10:01-0400



0π/2sin(x)lnsec(x)dx\displaystyle{\int_{0}^{\pi/2}\sin{(x)}\ln{\sec{(x)}}dx}


Solution


sin(x)lnsec(x)dx\displaystyle{\int\sin{(x)}\ln{\sec{(x)}}dx}


Integrate by parts fg=fgfg\displaystyle\int fg'=fg-\int f'g


f=ln(sec(x))f=ln(sec(x))

f=tan(x)f'=tan(x)


g=sin(x)g'=sin(x)

g=cos(x)g=-cos(x)


Hence from fg=fgfg\displaystyle\int fg'=fg-\int f'g

=cos(x)ln(sec(x))cos(x)tan(x)dx=-cos(x)ln(sec(x))-\displaystyle\int-cos(x)tan(x)dx


Now solving ;

cos(x)tan(x)dx\displaystyle\int-cos(x)tan(x)dx


Apply linearity;

=cos(x)tan(x)dx=-\displaystyle\int cos(x)tan(x)dx

Now solving;

cos(x)tan(x)dx\displaystyle\int cos(x)tan(x)dx


Rewrite/ Simplify using trigonometric/hyperbolic identities

=sin(x)dx=\displaystyle\int sin(x)dx


This is the standard integrals:


=cos(x)=-cos (x)


Plug in solved integrals;

=cos(x)ln(sec(x))cos(x)tan(x)dx=-cos(x)ln(sec(x))-\displaystyle\int-cos(x)tan(x)dx


=(cos(x)ln(sec(x))cos(x)=(-cos(x)ln(sec(x))-cos(x)


The problem is solved


sin(x)lnsec(x)dx\displaystyle{\int\sin{(x)}\ln{\sec{(x)}}dx}


=[cos(x)ln(sec(x))cos(x)+C]=[-cos(x)ln(sec(x))-cos(x)+C]


Simplify

=cos(x)(ln(cos(x))1)+C=cos(x)(ln(|cos(x)|)-1)+C


Hence

 0π/2sin(x)lnsec(x)dx=[cos(x)(ln(cos(x))1)+C]0π2\displaystyle{\int_{0}^{\pi/2}\sin{(x)}\ln{\sec{(x)}}dx}= [cos(x)(ln(|cos(x)|)-1)+C]_0^{\frac{π}{2}}


=[cos(π2)(ln(cos(π2))1)+C][cos(0)(ln(cos(0))1)+C]=1=[cos(\frac{π}{2})(ln(|cos(\frac{π}{2})|)-1)+C]- [cos(0)(ln(|cos(0)|)-1)+C]= 1





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment