Question #233074

Evaluate the integral 1e(lnx)2dx\displaystyle{\int_{1}^{e}(\ln{x})^{2}dx}∫ using the integration by parts twice

  1. e-2
  2. e+2
  3. e
  4. 1/e
1
Expert's answer
2021-09-07T18:21:59-0400

1e(lnx)2dxputlnx=t    x=etdx=etdtTherefore,1e(lnx)2dx=01t2etdtBy using by parts method, we get=t2etdt[dt2dtetdt]dt=t2et2tetdtBy using by parts method, we get=t2et2[tetet]=[t2et2tet+2et]01=e2e+2e2=e2\int_1^e (lnx)^2 dx\\ put\\ lnx=t\implies x=e^t\\ dx=e^tdt\\ Therefore,\\ \int_1^e (lnx)^2 dx=\int_0^1 t^2 e^t dt\\ \text{By using by parts method, we get}\\ =t^2\int e^tdt-\int [\frac{dt^2}{dt} \int e^tdt]dt\\ =t^2e^t-2\int te^tdt\\ \text{By using by parts method, we get}\\ =t^2e^t-2[te^t-e^t]\\ =[t^2e^t-2te^t+2e^t]_0^1\\ =e-2e+2e-2\\ =e-2

Therefore, option 1 is correct.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS