Answer:-
1. From Pythagoras theorem
c 2 = a 2 + b 2 c^2=a^2+b^2\\ c 2 = a 2 + b 2
The area of the triangle
A = 1 2 a b = 1 2 p c A=\dfrac{1}{2}ab=\dfrac{1}{2}pc A = 2 1 β ab = 2 1 β p c Then
p = a b c p=\dfrac{ab}{c} p = c ab β p = p ( a , b ) = a b a 2 + b 2 p=p(a, b)=\dfrac{ab}{\sqrt{a^2+b^2}} p = p ( a , b ) = a 2 + b 2 β ab β Differentiate by a a a
β p β a = b a 2 + b 2 β a 2 b a 2 + b 2 ( a 2 + b 2 ) \dfrac{\partial p}{\partial a}=\dfrac{b}{\sqrt{a^2+b^2}}-\dfrac{a^2b}{\sqrt{a^2+b^2}(a^2+b^2)} β a β p β = a 2 + b 2 β b β β a 2 + b 2 β ( a 2 + b 2 ) a 2 b β = a 2 b + b 3 β a 2 b a 2 + b 2 ( a 2 + b 2 ) =\dfrac{a^2b+b^3-a^2b}{\sqrt{a^2+b^2}(a^2+b^2)} = a 2 + b 2 β ( a 2 + b 2 ) a 2 b + b 3 β a 2 b β Substitute c = a 2 + b 2 c=\sqrt{a^2+b^2} c = a 2 + b 2 β
β p β a = b 3 c 3 \dfrac{\partial p}{\partial a}=\dfrac{b^3}{c^3} β a β p β = c 3 b 3 β 2.
A = c o n s t = > 1 2 a b = c o n s t A=const=>\dfrac{1}{2}ab=const A = co n s t => 2 1 β ab = co n s t Let a = k b , k > 0. a=kb, k>0. a = kb , k > 0. Then c 2 = a 2 + b 2 = k 2 b 2 + b 2 = b 2 ( 1 + k 2 ) . c^2=a^2+b^2=k^2b^2+b^2=b^2(1+k^2). c 2 = a 2 + b 2 = k 2 b 2 + b 2 = b 2 ( 1 + k 2 ) .
b c = 1 k 2 = c o n s t \dfrac{b}{c}=\sqrt{\dfrac{1}{k^2}}=const c b β = k 2 1 β β = co n s t p = b c ( a ) p=\dfrac{b}{c}(a) p = c b β ( a ) Use that b c = c o n s t , \dfrac{b}{c}=const, c b β = co n s t , if A = c o n s t . A=const. A = co n s t . Then
( β p β a ) A = b c (\dfrac{\partial p}{\partial a})_A=\dfrac{b}{c} ( β a β p β ) A β = c b β
Comments