Question #225363

Question:

Find the equation of the tangent plane and normal to the surface

2ð‘Ĩ𝑧2 − 3ð‘Ĩð‘Ķ − 4ð‘Ĩ = 7 at point

( 1, −1,2 )



1
Expert's answer
2021-08-12T14:09:43-0400

Solution;

Now, as gradient of 𝑓 is normal at a point to the level surface, we have;

∇f=i~ÎīfÎīx+j~ÎīfÎīy+k~ÎīfÎīz\nabla f=\tilde{i}\frac{\delta f}{\delta x}+\tilde{j}\frac{\delta f}{\delta y}+\tilde{k}\frac{\delta f}{\delta z}

Since , f=2xz2−3xy−4x−7f=2xz^2-3xy-4x-7

We have;

ÎīfÎīx=2z2−3y−4\frac{\delta f}{\delta x}=2z^2-3y-4

ÎīfÎīy=−3x\frac{\delta f}{\delta y}=-3x

ÎīfÎīz=4xz\frac{\delta f}{\delta z}=4xz

Therefore;

∇f=i~(2z2−3y−4)+j~(−3x)+k~(4xz)\nabla f=\tilde{i}(2z^2-3y-4)+\tilde{j}(-3x)+\tilde{k}(4xz)

At point (1,-1,2),we have the gradient as;

∇f=i~(2(22)−3(−1)−4)+j~(−3×1)+k~(4×1×2)\nabla f=\tilde{i}(2(2^2)-3(-1)-4)+\tilde{j}(-3×1)+\tilde {k}(4×1×2)

∇f=7i~−3j~+8k~\nabla f=7\tilde i-3\tilde j +8\tilde k Is the tangent.

If the vector position at point (1,-1,2) is r⃗\vec r then we have;

r⃗=i~−j~+2k~\vec r=\tilde i-\tilde j+2\tilde k

Let Q be another current point on the level surface through P(1,-1,2) with position vector R⃗\vec R .

Then ;

PQ⃗\vec {PQ} =R⃗−r⃗\vec R-\vec r =(X−1)i~+(Y+1)j~+(Z−2)k~(X-1)\tilde i +(Y+1)\tilde j+(Z-2)\tilde k

Since the tangent ∇f\nabla f and PQ⃗\vec {PQ} are perpendicular vectors ,their dot product is 0,we have

[(X−1)i~+(Y+1)I~+(Z−2)k~].[7i~−3j~+8k~]=0[(X-1)\tilde i+(Y+1)\tilde I+(Z-2)\tilde k].[7\tilde i -3\tilde j+8\tilde k]=0

Hence;

7(X-1)-3(Y+1)+8(Z-2)=0

7X-3Y+8Z=26

If the position vector of the current point Q on the normal is R⃗\vec R and (X,Y,Z) are its coordinates,then the equation of the normal at point P(x,y,z) to a level surface is given by

X−xÎīfÎīx=Y−yÎīfÎīy=Z−zÎīfÎīz\frac{X-x}{\frac{\delta f}{\delta x}}=\frac{Y-y}{\frac{\delta f}{\delta y}}=\frac{Z-z}{\frac{\delta f}{\delta z}}

Here,point (x,y,z) is (1,-1,2) and ÎīfÎīx=7\frac{\delta f}{\delta x}=7 ,ÎīfÎīy=−3\frac{\delta f}{\delta y}=-3 and ÎīfÎīz=8\frac{\delta f}{\delta z}=8

Therefore,the equation of the normal at the point (1,-1,2) to a given level surface is

X−17=Y+1−3=Z−28\frac{X-1}{7}=\frac{Y+1}{-3}=\frac{Z-2}{8}







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS