Solution;
Now, as gradient of ð is normal at a point to the level surface, we have;
â f = i ~ Îī f Îī x + j ~ Îī f Îī y + k ~ Îī f Îī z \nabla f=\tilde{i}\frac{\delta f}{\delta x}+\tilde{j}\frac{\delta f}{\delta y}+\tilde{k}\frac{\delta f}{\delta z} â f = i ~ Îī x Îī f â + j ~ â Îīy Îī f â + k ~ Îīz Îī f â
Since , f = 2 x z 2 â 3 x y â 4 x â 7 f=2xz^2-3xy-4x-7 f = 2 x z 2 â 3 x y â 4 x â 7
We have;
Îī f Îī x = 2 z 2 â 3 y â 4 \frac{\delta f}{\delta x}=2z^2-3y-4 Îī x Îī f â = 2 z 2 â 3 y â 4
Îī f Îī y = â 3 x \frac{\delta f}{\delta y}=-3x Îīy Îī f â = â 3 x
Îī f Îī z = 4 x z \frac{\delta f}{\delta z}=4xz Îīz Îī f â = 4 x z
Therefore;
â f = i ~ ( 2 z 2 â 3 y â 4 ) + j ~ ( â 3 x ) + k ~ ( 4 x z ) \nabla f=\tilde{i}(2z^2-3y-4)+\tilde{j}(-3x)+\tilde{k}(4xz) â f = i ~ ( 2 z 2 â 3 y â 4 ) + j ~ â ( â 3 x ) + k ~ ( 4 x z )
At point (1,-1,2),we have the gradient as;
â f = i ~ ( 2 ( 2 2 ) â 3 ( â 1 ) â 4 ) + j ~ ( â 3 Ã 1 ) + k ~ ( 4 Ã 1 Ã 2 ) \nabla f=\tilde{i}(2(2^2)-3(-1)-4)+\tilde{j}(-3Ã1)+\tilde {k}(4Ã1Ã2) â f = i ~ ( 2 ( 2 2 ) â 3 ( â 1 ) â 4 ) + j ~ â ( â 3 Ã 1 ) + k ~ ( 4 Ã 1 Ã 2 )
â f = 7 i ~ â 3 j ~ + 8 k ~ \nabla f=7\tilde i-3\tilde j +8\tilde k â f = 7 i ~ â 3 j ~ â + 8 k ~ Is the tangent.
If the vector position at point (1,-1,2) is r â \vec r r then we have;
r â = i ~ â j ~ + 2 k ~ \vec r=\tilde i-\tilde j+2\tilde k r = i ~ â j ~ â + 2 k ~
Let Q be another current point on the level surface through P(1,-1,2) with position vector R â \vec R R .
Then ;
P Q â \vec {PQ} PQ â =R â â r â \vec R-\vec r R â r =( X â 1 ) i ~ + ( Y + 1 ) j ~ + ( Z â 2 ) k ~ (X-1)\tilde i +(Y+1)\tilde j+(Z-2)\tilde k ( X â 1 ) i ~ + ( Y + 1 ) j ~ â + ( Z â 2 ) k ~
Since the tangent â f \nabla f â f and P Q â \vec {PQ} PQ â are perpendicular vectors ,their dot product is 0,we have
[ ( X â 1 ) i ~ + ( Y + 1 ) I ~ + ( Z â 2 ) k ~ ] . [ 7 i ~ â 3 j ~ + 8 k ~ ] = 0 [(X-1)\tilde i+(Y+1)\tilde I+(Z-2)\tilde k].[7\tilde i -3\tilde j+8\tilde k]=0 [( X â 1 ) i ~ + ( Y + 1 ) I ~ + ( Z â 2 ) k ~ ] . [ 7 i ~ â 3 j ~ â + 8 k ~ ] = 0
Hence;
7(X-1)-3(Y+1)+8(Z-2)=0
7X-3Y+8Z=26
If the position vector of the current point Q on the normal is R â \vec R R and (X,Y,Z) are its coordinates,then the equation of the normal at point P(x,y,z) to a level surface is given by
X â x Îī f Îī x = Y â y Îī f Îī y = Z â z Îī f Îī z \frac{X-x}{\frac{\delta f}{\delta x}}=\frac{Y-y}{\frac{\delta f}{\delta y}}=\frac{Z-z}{\frac{\delta f}{\delta z}} Îī x Îī f â X â x â = Îīy Îī f â Y â y â = Îīz Îī f â Z â z â
Here,point (x,y,z) is (1,-1,2) and Îī f Îī x = 7 \frac{\delta f}{\delta x}=7 Îī x Îī f â = 7 ,Îī f Îī y = â 3 \frac{\delta f}{\delta y}=-3 Îīy Îī f â = â 3 and Îī f Îī z = 8 \frac{\delta f}{\delta z}=8 Îīz Îī f â = 8
Therefore,the equation of the normal at the point (1,-1,2) to a given level surface is
X â 1 7 = Y + 1 â 3 = Z â 2 8 \frac{X-1}{7}=\frac{Y+1}{-3}=\frac{Z-2}{8} 7 X â 1 â = â 3 Y + 1 â = 8 Z â 2 â
Comments