Question #224771

Find the Maclaurin series or Taylor series centered at a, interval of

convergence and the radius of convergence of 1

√1−𝑥

.


1
Expert's answer
2021-08-24T15:58:48-0400

Solution;

Maclaurin series is given by;

Since a=0;

f(x)=n=0fn(0)xnn!=f(0)+f(0)x+f"(0)x22!+f(0)x33!+...f(x)=\displaystyle\sum_{n=0}^\infin\frac{f^n(0)x^n}{n!}=f(0)+f'(0)x+f"(0)\frac{x^2}{2!}+f'''(0)\frac{x^3}{3!}+...

Given;

f(x)=1xf(x)=\sqrt{1-x}

f(0)=10=1f(0)=\sqrt{1-0}=1

By differentiation;

f(x)=121xf'(x)=-\frac{1}{2\sqrt{1-x}}

f(0)=1210=12f'(0)=-\frac{1}{2\sqrt{1-0}}=-\frac12

f(x)=14(1x)32f''(x)=-\frac{1}{4(1-x)^{\frac32}}

f(0)=14(10)32=14f''(0)=-\frac{1}{4(1-0)^{\frac32}}=-\frac14

f(x)=38(1x)52f'''(x)=-\frac{3}{8(1-x)^{\frac52}}

f(0)=38(10)52=38f'''(0)=-\frac{3}{8(1-0)^{\frac52}}=-\frac38

By substitution;

f(x)=112x18x2116x3+...f(x)=1-\frac12x-\frac18x^2-\frac1{16}x^3+...

From the series;

f(x)=n=1(1)xn2(n2n2)f(x)=\displaystyle\sum_{n=1}^{\infin}(-1)\frac{x^n}{2(n^{2n-2})}

an=12(n2n2a_n=-\frac{1}{2(n^{2n-2}}

an+1=12(n+1)2na_{n+1}=\frac{-1}{2(n+1)^{2n}}

Using root test;

L=xlimnan+1anL=|x|\displaystyle{lim_{n\to\infin}}|\frac{a_{n+1}}{a_n}|

L=xlimnn2n2(n+1)2nL=|x|lim_{n\to\infin}|\frac{n^{2n-2}}{(n+1)^{2n}}|

L=xL=|x|

The interval of convergence will be ;

1<x<11<x<1

Hence Radius of convergence is;

R=1R=1




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS