Solution;
Maclaurin series is given by;
Since a=0;
f ( x ) = ∑ n = 0 ∞ f n ( 0 ) x n n ! = f ( 0 ) + f ′ ( 0 ) x + f " ( 0 ) x 2 2 ! + f ′ ′ ′ ( 0 ) x 3 3 ! + . . . f(x)=\displaystyle\sum_{n=0}^\infin\frac{f^n(0)x^n}{n!}=f(0)+f'(0)x+f"(0)\frac{x^2}{2!}+f'''(0)\frac{x^3}{3!}+... f ( x ) = n = 0 ∑ ∞ n ! f n ( 0 ) x n = f ( 0 ) + f ′ ( 0 ) x + f " ( 0 ) 2 ! x 2 + f ′′′ ( 0 ) 3 ! x 3 + ...
Given;
f ( x ) = 1 − x f(x)=\sqrt{1-x} f ( x ) = 1 − x
f ( 0 ) = 1 − 0 = 1 f(0)=\sqrt{1-0}=1 f ( 0 ) = 1 − 0 = 1
By differentiation;
f ′ ( x ) = − 1 2 1 − x f'(x)=-\frac{1}{2\sqrt{1-x}} f ′ ( x ) = − 2 1 − x 1
f ′ ( 0 ) = − 1 2 1 − 0 = − 1 2 f'(0)=-\frac{1}{2\sqrt{1-0}}=-\frac12 f ′ ( 0 ) = − 2 1 − 0 1 = − 2 1
f ′ ′ ( x ) = − 1 4 ( 1 − x ) 3 2 f''(x)=-\frac{1}{4(1-x)^{\frac32}} f ′′ ( x ) = − 4 ( 1 − x ) 2 3 1
f ′ ′ ( 0 ) = − 1 4 ( 1 − 0 ) 3 2 = − 1 4 f''(0)=-\frac{1}{4(1-0)^{\frac32}}=-\frac14 f ′′ ( 0 ) = − 4 ( 1 − 0 ) 2 3 1 = − 4 1
f ′ ′ ′ ( x ) = − 3 8 ( 1 − x ) 5 2 f'''(x)=-\frac{3}{8(1-x)^{\frac52}} f ′′′ ( x ) = − 8 ( 1 − x ) 2 5 3
f ′ ′ ′ ( 0 ) = − 3 8 ( 1 − 0 ) 5 2 = − 3 8 f'''(0)=-\frac{3}{8(1-0)^{\frac52}}=-\frac38 f ′′′ ( 0 ) = − 8 ( 1 − 0 ) 2 5 3 = − 8 3
By substitution;
f ( x ) = 1 − 1 2 x − 1 8 x 2 − 1 16 x 3 + . . . f(x)=1-\frac12x-\frac18x^2-\frac1{16}x^3+... f ( x ) = 1 − 2 1 x − 8 1 x 2 − 16 1 x 3 + ...
From the series;
f ( x ) = ∑ n = 1 ∞ ( − 1 ) x n 2 ( n 2 n − 2 ) f(x)=\displaystyle\sum_{n=1}^{\infin}(-1)\frac{x^n}{2(n^{2n-2})} f ( x ) = n = 1 ∑ ∞ ( − 1 ) 2 ( n 2 n − 2 ) x n
a n = − 1 2 ( n 2 n − 2 a_n=-\frac{1}{2(n^{2n-2}} a n = − 2 ( n 2 n − 2 1
a n + 1 = − 1 2 ( n + 1 ) 2 n a_{n+1}=\frac{-1}{2(n+1)^{2n}} a n + 1 = 2 ( n + 1 ) 2 n − 1
Using root test;
L = ∣ x ∣ l i m n → ∞ ∣ a n + 1 a n ∣ L=|x|\displaystyle{lim_{n\to\infin}}|\frac{a_{n+1}}{a_n}| L = ∣ x ∣ l i m n → ∞ ∣ a n a n + 1 ∣
L = ∣ x ∣ l i m n → ∞ ∣ n 2 n − 2 ( n + 1 ) 2 n ∣ L=|x|lim_{n\to\infin}|\frac{n^{2n-2}}{(n+1)^{2n}}| L = ∣ x ∣ l i m n → ∞ ∣ ( n + 1 ) 2 n n 2 n − 2 ∣
L = ∣ x ∣ L=|x| L = ∣ x ∣
The interval of convergence will be ;
1 < x < 1 1<x<1 1 < x < 1
Hence Radius of convergence is;
R = 1 R=1 R = 1
Comments