Find the Maclaurin series or Taylor series centered at a, interval of
convergence and the radius of convergence of 1
√1−𝑥
.
Solution;
Maclaurin series is given by;
Since a=0;
"f(x)=\\displaystyle\\sum_{n=0}^\\infin\\frac{f^n(0)x^n}{n!}=f(0)+f'(0)x+f"(0)\\frac{x^2}{2!}+f'''(0)\\frac{x^3}{3!}+..."
Given;
"f(x)=\\sqrt{1-x}"
"f(0)=\\sqrt{1-0}=1"
By differentiation;
"f'(x)=-\\frac{1}{2\\sqrt{1-x}}"
"f'(0)=-\\frac{1}{2\\sqrt{1-0}}=-\\frac12"
"f''(x)=-\\frac{1}{4(1-x)^{\\frac32}}"
"f''(0)=-\\frac{1}{4(1-0)^{\\frac32}}=-\\frac14"
"f'''(x)=-\\frac{3}{8(1-x)^{\\frac52}}"
"f'''(0)=-\\frac{3}{8(1-0)^{\\frac52}}=-\\frac38"
By substitution;
"f(x)=1-\\frac12x-\\frac18x^2-\\frac1{16}x^3+..."
From the series;
"f(x)=\\displaystyle\\sum_{n=1}^{\\infin}(-1)\\frac{x^n}{2(n^{2n-2})}"
"a_n=-\\frac{1}{2(n^{2n-2}}"
"a_{n+1}=\\frac{-1}{2(n+1)^{2n}}"
Using root test;
"L=|x|\\displaystyle{lim_{n\\to\\infin}}|\\frac{a_{n+1}}{a_n}|"
"L=|x|lim_{n\\to\\infin}|\\frac{n^{2n-2}}{(n+1)^{2n}}|"
"L=|x|"
The interval of convergence will be ;
"1<x<1"
Hence Radius of convergence is;
"R=1"
Comments
Leave a comment