Solution;
Maclaurin series is given by;
Since a=0;
f(x)=n=0∑∞n!fn(0)xn=f(0)+f′(0)x+f"(0)2!x2+f′′′(0)3!x3+...
Given;
f(x)=1−x
f(0)=1−0=1
By differentiation;
f′(x)=−21−x1
f′(0)=−21−01=−21
f′′(x)=−4(1−x)231
f′′(0)=−4(1−0)231=−41
f′′′(x)=−8(1−x)253
f′′′(0)=−8(1−0)253=−83
By substitution;
f(x)=1−21x−81x2−161x3+...
From the series;
f(x)=n=1∑∞(−1)2(n2n−2)xn
an=−2(n2n−21
an+1=2(n+1)2n−1
Using root test;
L=∣x∣limn→∞∣anan+1∣
L=∣x∣limn→∞∣(n+1)2nn2n−2∣
L=∣x∣
The interval of convergence will be ;
1<x<1
Hence Radius of convergence is;
R=1
Comments