Answer:-
a)
b)
z=x2+y2
zx=2x,zy=2y
Change in polar coordinates
x=r Cos"\\theta"
y=r Sin"\\theta"
x2+y2=r2
dA=rdrd"\\theta"
1<r<√3,0<"\\theta" <2"\\theta"
"\\sqrt (1+z_x^{2}+z_y^{2})=\\sqrt(1+4x^{2}+4y^{2})"
="\\sqrt(1+4r^{2})"
Surface area="\\iint_R\\sqrt(1+z_x^{2}+z_y^{2})dA"
="\\int_{0}^{2\u03c0}\\int_{1}^{\u221a3}\\sqrt(1+4r^{2})rdrd\\theta"
="\\int_{0}^{2\u03c0}d\\theta\\int_{1}^{\u221a3}\\sqrt(1+4r^{2})rdr"
Let 1+4r2=t2
8rdr=2tdt
"\\therefore" (2π-0)"\\int_{\u221a5}^{\u221a13}t*\\frac{tdt}{4}"
="\\frac{2\u03c0}{4}[\\frac{t^{3}}{3}]_{\u221a5}^{\u221a13}"
="\\frac{\u03c0}{6}(13\u221a13-5\u221a5)" square units
Comments
Leave a comment