For the Fourier series in Problem 1, deduce a
series for
π
4
at the point where x =
π
2
For the Fourier series in Problem 1, deduce a series for "\\dfrac{\\pi}4" at the point where "x= \\dfrac{\\pi}2"
"f(x)= \\dfrac{a_0}2+ \\Sigma a_n \\sin \\dfrac{n\u03c0x}{2}+ \\Sigma b_n\\cos\\dfrac{n\u03c0x}{2}"
but bn = 0
Hence, "f(x)= \\dfrac{a_0}2+ \\Sigma a_n \\sin \\dfrac{n\u03c0x}{2}"
When "\\dfrac{\\pi}2", f(x) = 2, hence;
"2 = \\dfrac8{\\pi}\\sin\\dfrac{\\pi}2+\\dfrac8{3\\pi}\\sin\\dfrac{3\\pi}2+ \\dfrac8{5\\pi}\\sin\\dfrac{5\\pi}2+..."
i.e
"2 =\\dfrac8{\\pi}(1-\\dfrac13+\\dfrac15-\\dfrac17+...)"
"\\dfrac\u03c04 = 1-\\dfrac13+\\dfrac15-\\dfrac17+..."
Comments
Leave a comment